Из равенства xy = yx следует, что делители чисел x и y одни и те же, то есть То же самое равенство показывает, что a1y = b1x, ..., any = bnx. Пусть для определённости x < y. Тогда из записанных равенств следует, что a1 < b1, ..., an < bn, то есть y = kx, где k – целое число. Подставляя равенство y = kx в исходное равенство xy = yx, получаем xkx = (kx)x, то есть xk–1 = k. По предположению k > 1, а значит, x > 1. Ясно, что 22–1 = 2. Легко также проверить, что если x > 2 или k > 2, то xk–1 > k.
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.
Из равенства xy = yx следует, что делители чисел x и y одни и те же, то есть То же самое равенство показывает, что a1y = b1x, ..., any = bnx. Пусть для определённости x < y. Тогда из записанных равенств следует, что a1 < b1, ..., an < bn, то есть y = kx, где k – целое число. Подставляя равенство y = kx в исходное равенство xy = yx, получаем xkx = (kx)x, то есть xk–1 = k. По предположению k > 1, а значит, x > 1. Ясно, что 22–1 = 2. Легко также проверить, что если x > 2 или k > 2, то xk–1 > k.
ответ
{2, 4}.