В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Sekureti556
Sekureti556
22.07.2020 16:06 •  Алгебра

(х2 + 1)(у? +1)=10,
(x+y)(xy -1) = 3;​

Показать ответ
Ответ:
Kizi89
Kizi89
17.10.2022 05:05

ответ:

 \sqrt{2 - x} + \sqrt{ - x - 1} = \sqrt{ - 5x - 7}

2 \sqrt{ - x - 2 + x {}^{2} } = - 5x - 7 - 1 + 2x

2 \sqrt{ - x - 2 + x {}^{2} } = - 3x - 8

 - 4x - 8 + 4x {}^{2} = 9x {}^{2} + 48x + 64

 - 4x - 8 + 4x {}^{2} - 9x {}^{2} - 48x - 64 = 0

 - 52x - 72 - 5x {}^{2} = 0

x = \frac{ - 26 + 2 \sqrt{79} }{5} \\ x = \frac{ - 26 - 2 \sqrt{79} }{5}

2.71206 = 1.10617 \\ 6.06435 = 6.06435

х(приблизно дорівнює)

 - 8.75528

все готово удачі там тобі надіюся що воно тобі то постав як найкращу відповідь будь-

0,0(0 оценок)
Ответ:
rakitina03
rakitina03
18.05.2023 06:10

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота