11п/9 = п+(2п/9), п<11п/9, 11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина. т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0. 3,14<п<3,15. 3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5, 5<6,28=2*3,14<2п<2*3,15. (3п/2)<5<2п. Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0. (3п/2)=1,5п<1,6п<2п. Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0. ответ. в).
Верное условие Дима шел три часа при этом скорость его была больше 4км в час, но меньше 6км в час. Сколько км всего мог пройти Дима за это время?
Шёл время t=3ч Скорость V >4 км/ч; V< 6км/ч 4Путь S=? S=V•t Наименьшее S>4•3 Наибольшее S<6•3 Записываем так 12 ответ: Дима мог пройти путь больше 12км и меньше 18км.
Действиями 1)) 3•4=12км путь но его скорость больше 4км/ч, значит 12км<чем 2)) 3•6=18км, путь, но скорость меньше чем 6км/ч, значит 18км> чем от 12<путь<18 ответ: мог пройти больше 12 км и меньше 18 км.
п<11п/9,
11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина.
т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0.
3,14<п<3,15.
3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5,
5<6,28=2*3,14<2п<2*3,15.
(3п/2)<5<2п.
Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0.
(3п/2)=1,5п<1,6п<2п.
Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0.
ответ. в).
Дима шел три часа при этом скорость его была больше 4км в час, но меньше 6км в час. Сколько км всего мог пройти Дима за это время?
Шёл время t=3ч
Скорость V >4 км/ч; V< 6км/ч
4Путь S=?
S=V•t
Наименьшее S>4•3
Наибольшее S<6•3
Записываем так
12
ответ: Дима мог пройти путь больше 12км и меньше 18км.
Действиями
1)) 3•4=12км путь но его скорость больше 4км/ч, значит 12км<чем
2)) 3•6=18км, путь, но скорость меньше чем 6км/ч, значит 18км> чем
от 12<путь<18
ответ: мог пройти больше 12 км и меньше 18 км.