b₁ не равно нулю (от противного, если b₁ = 0, то система не имеет решений); аналогично множители с q не равны 0, поэтому можно выполнить деление уравнений.
Поделим второе уравнение на первое:
В первом уравнении сократим на b₁, не равное нулю, и решим его отдельно относительно q:
Так как знаменатель не обращается в нуль (D < 0), то можно выполнить перемножение крест-накрест. Получим:
= (4b+a)(3a²b² + 4b- a)
2) 49c² -14c+1 -21ac+3a = (49c²-14c+1) -3a(7c - 1) = (7c - 1)² - 3a(7c - 1) =
=(7c-1)(7c - 1 - 3a)
3)ax²+ay²+x^4+2x²y²+y^4 = a(x²+y²)+(x^4+2x²y²+y^4) = a(x²+y²) +(x²+y²)²=
= (x²+y²) (a +x²+y²)
4) 27c³-d³+9c²+3cd+d² = [(3c)³-d³]+ (9c²+3cd+d²) =
=[(3c - d)(9c²+3cd+d²)] + (9c²+3cd+d²) = (9c²+3cd+d²) (3c-d+1)
5) b³-2b²-2b+1 =(b³ + 1) - 2b( b+1) = (b+1)(b² -b+1) - 2b(b+1) =
= (b+1)(b² -b+1-2b) = (b+1)(b² -3b+1)
ответ: -8
Объяснение:
По формуле bn = b₁ * qⁿ⁻¹ преобразуем b₂, b₃, b₅:
b₂ = b₁ * q,
b₃ = b₁ * q²,
b₅ = b₁ * q⁴.
Заменим b₂, b₃, b₅ в данных выражениях и составим систему:
b₁ + b₂ + b₃ = b₁ + b₁*q + b₁*q² = b₁ * (1 + q + q²)
b₁ + b₃ + b₅ = b₁ + b₁*q² + b₁*q⁴ = b₁ * (1 + q² + q⁴)
b₁ не равно нулю (от противного, если b₁ = 0, то система не имеет решений); аналогично множители с q не равны 0, поэтому можно выполнить деление уравнений.
Поделим второе уравнение на первое:
В первом уравнении сократим на b₁, не равное нулю, и решим его отдельно относительно q:
Так как знаменатель не обращается в нуль (D < 0), то можно выполнить перемножение крест-накрест. Получим:
4q⁴ + 4q² + 4 = 7q² + 7q + 7,
4q⁴ - 3q² - 7q - 3 = 0,
4q⁴ + (- 6q³ + 6q³) - 3q² + (-6q² + 6q²) - 7q + (-2q + 2q) - 3 = 0,
(4q⁴ - 6q³) + (6q³ - 9q²) + (6q² - 9q) + (2q - 3) = 0,
2q³(2q - 3) + 3q²(2q - 3) + 3q(2q - 3) + (2q - 3) = 0,
(2q - 3)(2q³ + 3q² + 3q + 1) = 0,
(2q - 3)(2q³ + (2q² + q²) + (2q + q) + 1) = 0,
(2q - 3)((2q³ + 2q² + 2q) + (q² + q + 1)) = 0,
(2q - 3)(2q(q² + q + 1) + q² + q + 1) = 0,
(2q - 3)(2q + 1)(q² + q + 1) = 0,
Последняя скобка не обращается в ноль (D < 0), следовательно
q₁ = -0,5
q₂ = 1,5
q₂ не подходит по условию (так как геометрическая прогрессия бесконечно убывающая, то есть |q| < 1)
Вернёмся к системе:
Используя найденные значения b₁ и q, найдём сумму прогрессии по соответствующей формуле: