Прямые пересекаются тогда когда они не параллельны, прямые параллельны тогда когда коэффициенты к1=к2,где у1=к1х+в; у2=к2х+в
а) прямые идентичны - совпадают они не могут быть параллельны;
б)к1=-3 к2=2 то есть к1 не равно к2 таким образом прямые пересекаются, найдем точку пересечения
-3х+4=2х-1
-5х=-1-4
х=1 ттогда у=-3*(1)+4=1 то есть прямые пересекаются в точке (1;1)
в)опять же прямые совпадают
г)-5 не равно 1 то есть прямые пересекаются, ищем точку
-5х+3=х-3
-6х=-6
х=1 тогда у=-5*1+3=-2 то есть пересекаются в точке (1;-2)
д)1=1 то есть прямые параллельны, не пересекаются
е)тоже параллельны так как 1,5=1,5
ж) прямые параллельны
з) прямые пересекаюстя так как 79 не равно 75
и пересекаются они в точке:
79х=75х
х=0 тогда у=79*0=0 (0;0)
Решение Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T. Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана, ∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников AML и MBT (по двум углам: ∠MAL = ∠BTА₁, ∠ALB = ∠LBT — накрест лежащие при параллельных прямых AC, BT и секущих BL, AT) следует, что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T, то AM : MT = 1 : 7. Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
а) прямые идентичны - совпадают они не могут быть параллельны;
б)к1=-3 к2=2 то есть к1 не равно к2 таким образом прямые пересекаются, найдем точку пересечения
-3х+4=2х-1
-5х=-1-4
х=1 ттогда у=-3*(1)+4=1 то есть прямые пересекаются в точке (1;1)
в)опять же прямые совпадают
г)-5 не равно 1 то есть прямые пересекаются, ищем точку
-5х+3=х-3
-6х=-6
х=1 тогда у=-5*1+3=-2 то есть пересекаются в точке (1;-2)
д)1=1 то есть прямые параллельны, не пересекаются
е)тоже параллельны так как 1,5=1,5
ж) прямые параллельны
з) прямые пересекаюстя так как 79 не равно 75
и пересекаются они в точке:
79х=75х
х=0 тогда у=79*0=0 (0;0)
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше