В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
миру3
миру3
22.04.2021 06:47 •  Алгебра

Используя выделение из трехчлена квадрата двучлена,докажите неравенство a^{2}+ab+b^{2}> 0[/tex]

Показать ответ
Ответ:
Лёха142002
Лёха142002
01.10.2020 03:59

Ваше неравенство неверно: оно не выполняется при a=b=0, Неравенство должно быть нестрогим.

 

a^{2}+ab+b^{2}=a^2+2\cdot a\cdot\dfrac b2+\left(\dfrac b2\right)^2+\dfrac{3b^2}4=\left(a+\left(\dfrac b2\right)\right)^2+\dfrac{3b^2}4

 

Последнее выражение неотрицательно как сумма неотрицательных слагаемых.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота