система мер длины включала в себя следующие основные меры: версту, сажень, аршин, локоть, пядь и вершок.
аршин - старинная мера длины, равная, в современном исчислении 0,7112м. аршином, так же, называли мерную линейку, на которую, обычно, наносили деления в вершках.
шаг - средняя длина человеческого шага = 71 см. одна из древнейших мер длины.
пядь (пядница) - древняя мера длины. малая пядь (говорили - "пядь"; с 17-го века она называлась - "четверть" ) - расстояние между концами расставленных большого и указательного (или среднего) пальцев = 17,78 cm.
большая пядь - расстояние между концами большого пальца и мизинца (22-23
пядь с кувырком ("пядень с кувырком", по далю - 'п я д ь с кувыркой') - пядь с прибавкой двух суставов указательного палица = 27-31 см
старые наши иконописцы величину икон измеряли пядями: «девять икон — семи пядей (в 1 3/4 аршина). пречистая тихвинская на золоте — пядница (4 вершка). икона георгие великий деяньи тетырёх пядей (в 1аршин)»
верста - путевая мера (её раннее название - ''поприще'')
сажень - одна из наиболее распространенных на руси мер длины. различных по назначению (и, соответственно, величине) саженей было больше десяти. "маховая сажень" - расстояние между концами пальцев широко расставленных рук взрослого мужчины. " косая сажен " - самая длинная: расстояние от носка левой ноги до конца среднего пальца поднятой вверх правой руки. используется в словосочетании: "у него косая сажень в плечах " (в значении - богатырь, великан)
1) (3х + 1)/(х - 2) = (2х - 10)/(х + 1) - применим основное свойство пропорции: в верной пропорции произведение крайних членов пропорции равно произведению средних членов пропорции;
ответ:
система мер длины включала в себя следующие основные меры: версту, сажень, аршин, локоть, пядь и вершок.
аршин - старинная мера длины, равная, в современном исчислении 0,7112м. аршином, так же, называли мерную линейку, на которую, обычно, наносили деления в вершках.
шаг - средняя длина человеческого шага = 71 см. одна из древнейших мер длины.
пядь (пядница) - древняя мера длины. малая пядь (говорили - "пядь"; с 17-го века она называлась - "четверть" ) - расстояние между концами расставленных большого и указательного (или среднего) пальцев = 17,78 cm.
большая пядь - расстояние между концами большого пальца и мизинца (22-23
пядь с кувырком ("пядень с кувырком", по далю - 'п я д ь с кувыркой') - пядь с прибавкой двух суставов указательного палица = 27-31 см
старые наши иконописцы величину икон измеряли пядями: «девять икон — семи пядей (в 1 3/4 аршина). пречистая тихвинская на золоте — пядница (4 вершка). икона георгие великий деяньи тетырёх пядей (в 1аршин)»
верста - путевая мера (её раннее название - ''поприще'')
сажень - одна из наиболее распространенных на руси мер длины. различных по назначению (и, соответственно, величине) саженей было больше десяти. "маховая сажень" - расстояние между концами пальцев широко расставленных рук взрослого мужчины. " косая сажен " - самая длинная: расстояние от носка левой ноги до конца среднего пальца поднятой вверх правой руки. используется в словосочетании: "у него косая сажень в плечах " (в значении - богатырь, великан)
объяснение:
ответ:
1) (3х + 1)/(х - 2) = (2х - 10)/(х + 1) - применим основное свойство пропорции: в верной пропорции произведение крайних членов пропорции равно произведению средних членов пропорции;
о. д. з. x ≠ 2; x ≠ -1;
(3х + 1)(х + 1) = (х - 2)(2х - 10);
3х^2 + 3х + х + 1 = 2х^2 - 10х - 4х + 20;
3х^2 + 4х + 1 = 2х^2 - 14х + 20;
3х^2 - 2х^2 + 4х + 14х + 1 - 20 = 0;
х^2 + 18х - 19 = 0;
d = b^2 - 4ac;
d = 18^2 - 4 * 1 * (-19) = 324 + 76 = 400; √d = 20;
x = (-b ± √d)/(2a);
x1 = (-18 + 20)/2 = 2/2 = 1;
x2 = (-18 - 20)/2 = -38/2 = -19.
ответ. 1; -19.
2) (х + 2)/(х - 1) + х/(х + 1) = 6/(х^2 - 1) - дроби в левой части уравнения к общему знаменателю (х - 1)(х + 1) = х^2 - 1; дополнительный множитель для первой дроби равен (х + 1), для второй - (х - 1);
((х + 2)(х + 1) + х(х - 1))/(х^2 - 1) = 6/(х^2 - 1) - чтобы дроби с одинаковыми знаменателями были равны, надо чтобы их числители тоже были равны;
о. д. з. х ≠ ±1;
(х + 2)(х + 1) + х(х - 1) = 6;
х^2 + х + 2х + 2 + х^2 - х - 6 = 0;
2х^2 + 2х - 4 = 0;
х^2 + х - 2 = 0;
d = 1^2 - 4 * 1 * (-2) = 1 + 8 = 9; √d = 3;
x1 = (-1 + 3)/2 = 2/2 = 1 - посторонний корень, т.к. не принадлежит о. д. з.;
x2 = (-1 - 3)/2 = -4/2 = -2.
ответ. -2.
объяснение: