Из пункта а в пункт в, расстояние между которыми 4 км, одновременно выходит пешеход и выезжает велосипедист. велосипедист доезжает до в, сразу поворачивает обратно и встречает пешехода через 24 мин после своего выезда из а. определите скорость пешехода и велосипедиста, если известно, что велосипедист проезжает в час на 10 км больше, чем проходит пешеход.
Пусть скорость пешехода х км/ч, а велосипедиста — (х+10) км/ч. Пусть встреча произошла на расстоянии у от В. АВ = 4 км - по условию, ВС=у.
АСВ
велосипедист проехал АВ+ВС = 4+у за время (4+у) /х+10,
а пешеход АВ - ВС = 4-у за время (4-у) /х, что равно 24 мин = 2/5 часа.
Система: (4+у) /x+10 = 2/5,
(4-y) / x = 2/5. Запиши в виде дробей и перемножь накрест, как в пропорциях.
Найди у.
2х=20-5у (1) х=20-5у/2
(2) 2х+20=20+5у
Из (1) в (2) подставим 20-5у/2 вместо х:
(2): 2(20-5у/2)+20=20+5у
10у=20
у= 2
подставляем 2 в (1)
х=20-10/2=5 км/ч
скорость пешехода