Известно, что 88 % жителей некоторой страны ни разу не ели авокадо. Случайным образом выбрали n жителей и выяснили число k тех из них, которые не ели авокадо. Насколько большим должно быть n, чтобы с вероятностью более 58 % можно было утверждать, что частота k/n отличается от 0,88 не более чем на 0,01? ответ: следует опросить не менее чем ? жителей
(промежуточные результаты округляй до тысячных).
Из таблиц значений функции Ф укажи приближение:
Ф(x)≈0,29;
x≈
(x-4)(x+5)=0
x-4=0 или x+5=0
x=4 x=-5
#2
(3a-2)(2a+5)=0
3a-2=0 или 2a+5=0
3a=2 2a=-5
a=-2.5
#3
y(4y-1)=0
y=0 или 4y-1=0
4y=1
y=0.25
#4
x(5x+4)=0
x=0 или 5x+4=0
5x=-4
x=-0.8
#5
(z+2)(8z-5)=0
z+2=0 или 8z-5=0
z=-2 8z=5
z=0.625
#6
(b-0.3)(4b-2.6)(3b+1.5)=0
b-0.3=0 или 4b-2.6=0 или 3b+1.5=0
b=0.3 4b=2.6 3b=-1.5
b=0.65 b=-0.5
#7
(0.8-4x)(5x+3.5)(5.2x-15.6)=0
0.8-4x=0 или 5x+3.5=0 или 5.2x-15.6=0
-4x=-0.8 или 5x=-3.5 или 5.2x=15.6
x=0.2 x=-0.7 x=3
#8
y(0.3y-7.8)(6+4y)(2y-3.4)=0
y=0 или 0.3y-7.8=0 или 6+4y=0 или 2y-3.4=0
0.3y=7.8 4y=-6 2y=3.4
y=26 y=-1.5 y=1.7
#9
z(2.4z-0.72)(3z+33.6)(4.2-6z)=0
z=0 или 2.4z-0.72=0 или 3z+33.6=0 или 4.2-6z=0
2.4z=0.72 3z=-33.6 -6z=-4.2
z=0.3 z=-11.2 z=0.7
#10
-x(3.2x-0.64)(5x+20.5)(2.8-7x)=0
-x=0 или 3.2x-0.64=0 или 5x+20.5=0 или 2.8-7x=0
корней нет 3.2x=0.64 5x=-20.5 -7x=-2.8
x=0.2 x=-4.1 x=0.4
Главный, т.е. я, получаю больше всех, уменьшать можно по этой же иерархии, на котором основана и влиятельность каждого охотника.
Например я получаю 20 серебряных монет, каждый следующий получает на 2 меньше.
2. - 18 - в любом случает проголосует за.
3. - 16
4. - 14
5. - 12.
6. - 10.
Шестой получил в два раза меньше, это ничего. Но на этом хватает, остальным можно вовсе не вручать, т.к. шесть положительных голосов в мою сторону есть. Оставшиеся монеты можно разделить между этими шестью членами, что увеличивает шанс положительного отзыва к его предложению, т.к. все члены этой "банды" умны точно так же как и их глава, то они должны понимать их влияние в этой организации и кол-во денег, которые они заслуживают по этой иерархии. Уменьшение вручаемых денег закономерно.