Человек в комментариях, похоже, прав. Так как мы тянем карточки с равной вероятностью, то можно считать нашу вероятность по формуле:
где - количество благоприятных исходов, - количество всех исходов.
Но здесь каждому благоприятному исходу соответствует неблагоприятный (просто изменим порядок карточек). Поэтому всех исходов в два раза больше, чем благоприятных. Итак
Примечание: ответ таков, если считать, что первая карточка обратно не замешивается, а выбирается пара различных карточек. Иначе возможны случаи, когда вытащена два раза одна и та же карточка, но это уже другая история.
Можно решить путем составления системы уравнений. обозначим через х - число деталей в день 1 рабочего, а через у - количество дней. тогда для второго рабочего это будет х+5 и у-1 составим систему { ху=100 (х+5)(у-1)=100 преобразуя эту систему, получим у=(х+5)/5. далее в выражение ху=100 подставим значение у. получим квадратное уравнение x^2+5x-500=0. корнями этого уравнения будут х1=-25, х2=20. выбираем 20. столько изготавливает в день первый рабочий.
Так как мы тянем карточки с равной вероятностью, то можно считать нашу вероятность по формуле:
где - количество благоприятных исходов, - количество всех исходов.
Но здесь каждому благоприятному исходу соответствует неблагоприятный (просто изменим порядок карточек). Поэтому всех исходов в два раза больше, чем благоприятных. Итак
Примечание: ответ таков, если считать, что первая карточка обратно не замешивается, а выбирается пара различных карточек. Иначе возможны случаи, когда вытащена два раза одна и та же карточка, но это уже другая история.