Перемножим 25 a^4 + 50 a^3 x + 35 a^2 x^2 + 10 a x^3 + x^4 попробуем выделить полный квадрат в него явно входит 5a^2 и x^2 Но при наличии только этих двух слагаемых результирующий многочлен не имел бы а и х в третьей степени. Значит, есть ещё что-то. Обозначим это нечто как z (5a^2 +z+ x^2 )^2-(25 a^4 + 50 a^3 x + 35 a^2 x^2 + 10 a x^3 + x^4)= z^2 + 2 x^2 z + 10 a^2 z - 50 a^3 x - 25 a^2 x^2 - 10 a x^3 =0 Решим это квадратное уравнение относительно z корня два z = 5 a x и второй z = -10 a^2 - 5 a x - 2 x^2 второй не интересен :) ответ (5 a^2 + 5 a x + x^2)^2 - квадрат исходного выражения
25 a^4 + 50 a^3 x + 35 a^2 x^2 + 10 a x^3 + x^4
попробуем выделить полный квадрат
в него явно входит 5a^2 и x^2
Но при наличии только этих двух слагаемых результирующий многочлен не имел бы а и х в третьей степени.
Значит, есть ещё что-то. Обозначим это нечто как z
(5a^2 +z+ x^2 )^2-(25 a^4 + 50 a^3 x + 35 a^2 x^2 + 10 a x^3 + x^4)=
z^2 + 2 x^2 z + 10 a^2 z - 50 a^3 x - 25 a^2 x^2 - 10 a x^3 =0
Решим это квадратное уравнение относительно z
корня два
z = 5 a x
и второй
z = -10 a^2 - 5 a x - 2 x^2
второй не интересен :)
ответ
(5 a^2 + 5 a x + x^2)^2 - квадрат исходного выражения
б) если рассмотреть равенство: x² + (y+1)² = 4
то график этого уравнения --это окружность с центром в (0; -1) радиуса 2.
уравнение окружности с центром (x₀; y₀) радиуса R: (х-х₀)² + (y-y₀)² = R²
в задании знак неравенства "больше", т.е. это часть плоскости ВНЕ круга, включая границу (окружность)
например: точка (2;-3)
2² + (-3+1)² ≥ 4 верно...
а) неравенство с модулем со знаком "меньше" равносильно двойному неравенству: -2 < y-x-1 < 2 (прибавим 1)
-1 < y-x < 3
двойное неравенство равносильно системе неравенств (пересечению промежутков):
{y-x<3
{y-x>-1
или
{ y < x+3 (часть плоскости НИЖЕ (знак "<") прямой у=х+3)
{ y > x-1 (часть плоскости ВЫШЕ (знак ">") прямой у=x-1)
это полоса между параллельными прямыми...
и всегда можно проверить...
например, точка (2;-1) не принадлежит этому множеству...
|-1-2-1| < 2 неверно
точка (0;0) принадлежит этому множеству...
|0-0-1| < 2 верно