Как решать систем уравнений с двумя переменами сложения,как решать системы и системы с двумя переменными.Как решать уравнение с двумя переменами ,как строить график уравнений.как решать задачи с графиком.Очень мне нужно ответи на во Я
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
Заметим , что когда a=b , получаем что 0=0 , то есть условие выполнено. И в этом случае уравнение имеет бесконечно много решений.
Теперь, поскольку мы разобрали этот случай и (a-b)^2>=0 , то для случая a≠b , можно поделить обе части неравентсва на (a-b)^2 не меняя знак неравенства :
(a^2+ab+b^2)^2>=(a+b)^2*(a^2+b^2)
( a^2+ab+b^2)^2 >= (a^2+2ab+b^2)*(a^2+b^2)
Теперь сделаем слудующий прием , поскольку (a^2+b^2)^2>0 при a≠b≠0
То можно поделить на это выражение обе части неравенства не меняя его знак :
( 1+ ab/(a^2+b^2) )^2>= 1+ 2ab/(a^2+b^2)
Тогда можно сделать замену:
ab/(a^2+b^2)=t
(1+t)^2>=1+2t
t^2+2t+1>=1+2t
t^2>=0 (верно)
Таким образом :
(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4) , то есть D>=0.
Вывод : уравнение имеет действительное решение при любых действительных а и b.
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
Чтобы уравнение имело действительное решение , достаточно чтобы дискриминант был неотрицательным.
D/4 = (a^3-b^3)^2 -(a^2-b^2)*(a^4-b^4)>=0
То есть , необходимо доказать , что при любых a и b справедливо строгое неравенство :
(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4)
(a-b)^2*(a^2+ab+b^2)^2>=(a-b)^2* (a+b)^2 * (a^2+b^2)
Заметим , что когда a=b , получаем что 0=0 , то есть условие выполнено. И в этом случае уравнение имеет бесконечно много решений.
Теперь, поскольку мы разобрали этот случай и (a-b)^2>=0 , то для случая a≠b , можно поделить обе части неравентсва на (a-b)^2 не меняя знак неравенства :
(a^2+ab+b^2)^2>=(a+b)^2*(a^2+b^2)
( a^2+ab+b^2)^2 >= (a^2+2ab+b^2)*(a^2+b^2)
Теперь сделаем слудующий прием , поскольку (a^2+b^2)^2>0 при a≠b≠0
То можно поделить на это выражение обе части неравенства не меняя его знак :
( 1+ ab/(a^2+b^2) )^2>= 1+ 2ab/(a^2+b^2)
Тогда можно сделать замену:
ab/(a^2+b^2)=t
(1+t)^2>=1+2t
t^2+2t+1>=1+2t
t^2>=0 (верно)
Таким образом :
(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4) , то есть D>=0.
Вывод : уравнение имеет действительное решение при любых действительных а и b.
Что и требовалось доказать.