Oy: x = 0 ⇒ y = -9. Значит (0;-9) - точка пересечения с осью Oy.
5. Промежутки монотонности и точки экстремума:
y=-x^4+8x^2-9.
y'=0 ⇒-4x³+16x = 0 ⇒ -4x(x²-4) = 0.
Имеем 3 критические точки: х = 0, х = 2 и х = -2.
Определяем знаки производной вблизи критических точек.
x = -3 -2 -1 0 1 2 3
y' = 60 0 -12 0 12 0 -60.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
Минимум функции в точке: x = 0.
Максимумы функции в точках:
x = -2.
x = 2.
Убывает на промежутках (-2, 0] U [2, +oo).
Возрастает на промежутках (-oo, -2] U [0, 2).
6. Вычисление второй производной: y''=-12х² + 16 ,
Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
Вторая производная 4 \left(- 3 x^{2} + 4\right) = 0.
Решаем это уравнение
Корни этого уравнения
x_{1} = - \frac{2 \sqrt{3}}{3}.
x_{2} = \frac{2 \sqrt{3}}{3}.
7. Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках [-2*sqrt(3)/3, 2*sqrt(3)/3]
Выпуклая на промежутках (-oo, -2*sqrt(3)/3] U [2*sqrt(3)/3, oo)
Исследовать функцию y=-x^4+8x^2-9 и построить ее график.
1. Область определения функции - вся числовая ось.
2. Функция y=-x^4+8x^2-9 непрерывна на всей области определения. Точек разрыва нет.
3. Четность, нечетность, периодичность:
Так как переменная имеет чётные показатели степени, то функция чётная, непериодическая.
4. Точки пересечения с осями координат:
Ox: y=0, -x^4+8x^2-9=0, заменим x^2 = n.
Квадратное уравнение, решаем относительно n:
Ищем дискриминант:
D=8^2-4*(-1)*(-9)=64-4*(-1)*(-9)=64-(-4)*(-9)=64-(-4*(-9))=64-(-(-4*9))=64-(-(-36))=64-36=28;
Дискриминант больше 0, уравнение имеет 2 корня:
n₁=(√28-8)/(2*(-1)) = (√28-8)/(-2) = -(2√7/2-8/2)= 4 -√7 ≈ 1,354249;
n₂ = (-√28-8)/(2*(-1)) = (-2√7-8)/(-2)= 4 + √7 ≈ 6,645751.
Обратная замена: х = √n.
x₁ = √1,354249 = 1,163722, x₂ = -1,163722.
x₃ = √6,645751 = 2,57793, x₄ = -2,577935.
Получаем 4 точки пересечения с осью Ох:
(1,163722; 0), (-1,16372; 0), (2,57793; 0), (-2,57793; 0).
x₃ = √6,645751 = 2,57793,
Oy: x = 0 ⇒ y = -9. Значит (0;-9) - точка пересечения с осью Oy.
5. Промежутки монотонности и точки экстремума:
y=-x^4+8x^2-9.
y'=0 ⇒-4x³+16x = 0 ⇒ -4x(x²-4) = 0.
Имеем 3 критические точки: х = 0, х = 2 и х = -2.
Определяем знаки производной вблизи критических точек.
x = -3 -2 -1 0 1 2 3
y' = 60 0 -12 0 12 0 -60.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
Минимум функции в точке: x = 0.
Максимумы функции в точках:
x = -2.
x = 2.
Убывает на промежутках (-2, 0] U [2, +oo).
Возрастает на промежутках (-oo, -2] U [0, 2).
6. Вычисление второй производной: y''=-12х² + 16 ,
Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
Вторая производная 4 \left(- 3 x^{2} + 4\right) = 0.
Решаем это уравнение
Корни этого уравнения
x_{1} = - \frac{2 \sqrt{3}}{3}.
x_{2} = \frac{2 \sqrt{3}}{3}.
7. Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках [-2*sqrt(3)/3, 2*sqrt(3)/3]
Выпуклая на промежутках (-oo, -2*sqrt(3)/3] U [2*sqrt(3)/3, oo)
8. Искомый график функции в приложении.
Подробнее - на -
Объяснение:
1) а) F'(x)=3*x^2+8*x-5+0
Так как (x^3)'=3*x^2, (x^2)'=2*x, (x)'=1, (C)'=0, то F'(x)=f(x)
б) F'(x)=3*4*x^3-1/x=12*x^3-1/x
Так как (x^4)'=4*x^3, (ln x)'=1/x, то F'(x)=f(x)
2) a) F(x)=-x^(-2)+sin x, (x^(-2))'=-2*x^(-2-1)=-2*x^-3=-2/x^3, (sin x)'=cos x и f(x)=2/x^3+cos x
След. F'(x)=f(x)
б) F(x)=3*e^x
Так как (3*e^x)'=3*(e^x)'=3*e^x и f(x)=3*e^x, то F'(x)=f(x)
3) F(x)=x^3+2x^2+C,
т. к. (x^3)'=3x^2
(2x^2)'=2*2x=4x
C'=0
1. f(x)=3x^2+4x
След. , F'(x)=f(x)
2. Т. к. график первообразной проходит через A(1;5), то 5=1^3+2*1+C - верное равенство
5=3+С
С=2
ответ: F(x)=x^3+2x^2+2
4) у=x^2
у=9
x^2=9
х1=-3
х2=3
Границы интегрирования: -3 и 3
Чертим на коорд. пл. графики функ. у=x^2 и у=9, опускаем проекции из точек пересеч. графиков на ось х
Полученный прямоугольник обозначаем как ABCD, площадь которого равна 9*(3+3)=54
S (OCD)= ∫ от 0 до 3 x^2 dx = 1/3*3^3-1/3*0=9
Т. к. S (ABO) = S (OCD), то S(иск) =54-2*9=36
В пятом условии для решения не хватает функции, график которой бы "замыкал" указанные параболы на коор. плоскости.