Умножим и первое и второе неравенство на 2, чтобы избавиться от дроби:
2+3x>=2
2+3x<=3
3х>=2-2
3x<=3-2
3x>=0
3x<=1
x>=0 решение неравенства х∈[0, ∞)
x<=1/3 решение неравенства х∈(-∞, 1/3]
Отметим на числовой оси решение первого неравенства и решение второго, чтобы найти пересечение решений, то есть, такое решение, которое подходит и первому, и второму неравенству.
Решение системы неравенств х∈ [0, 1/3]
Неравенства нестрогие, скобки квадратные.
9) -(2-3х)+4(6+х)>=1
-2+3x+24+4x>=1
7x+22>=1
7x>=1-22
7x>= -21
x>= -3
х∈[-3, ∞)
Неравенства нестрогие, скобка квадратная, у знаков + - бесконечности всегда круглая.
а) 5х2 = 9х + 2; б) -х2 = 5x - 14;
в) 6х + 9 = х2; г) z - 5 = z2 - 25;
д) у2 = 520 - 576; е) 15у2 - 30 = 22y + 7;
ж) 25р2 = 10p - 1; з) 299х2 + 100x = 500 - 101х2. ответ:а) 5х2 = 9х + 2; 5х2 - 9х - 2 = 0; D = 81 + 4 • 5 • 2 = 81 + 40= 121; х = (9±11)/10; х1 = -0,2; х2 = 2;
б) -х2 = 5x - 14; х2 + 5х - 14 = 0; D = 25 + 4 • 14 = 81; х = (-5±9)/2; х1 = -7; х2 = 2;
в) 6х + 9 = х2; х2 - 6х - 9 = 0; D = 36 + 4 • 9 = 36 + 36 = 72; х = (6±√72)/2; = 3 ± 3√2;
г) z - 5 = z2 - 25; z2 - z - 20 = 0; D = 1 + 80 = 81; х = (1±9)/2;; х1 = -4; х2 = 5;
д) у2 = 520 - 576; у2 - 52у + 576 = 0; D1 = 262 - 576 = 676 - 576 = 100; х = (26±10)/1; х1 = 16; х2 = 36;
е) 15у2 - 30 = 22y + 7; 15у2 -22у - 37 = 0; D = 112 + 37 • 15 = 676; х = (11±26)/15; х1 = -1; х2 = 37/15 = 2 7/15;
ж) 25р2 = 10p - 1; 25р2 - 10р + 1; D1 = 25 - 25 = 0; p = 5/25 = 1/5;
з) 299х2 + 100x = 500 - 101х2; 400х2 + 100х - 500 = 0; 4х2 + х - 5 = 0; D = 1 + 4 • 4 • 5 = 81; х = (-1±9)/8; х1 = -1 1/4; х2 = 1.
8)х∈ [0, 1/3]
9)х∈[-3, ∞)
Объяснение:
8)1<=(2+3x)/2<=1,5
Решаем как систему:
(2+3x)/2>=1
(2+3x)/2<=1,5
Умножим и первое и второе неравенство на 2, чтобы избавиться от дроби:
2+3x>=2
2+3x<=3
3х>=2-2
3x<=3-2
3x>=0
3x<=1
x>=0 решение неравенства х∈[0, ∞)
x<=1/3 решение неравенства х∈(-∞, 1/3]
Отметим на числовой оси решение первого неравенства и решение второго, чтобы найти пересечение решений, то есть, такое решение, которое подходит и первому, и второму неравенству.
Решение системы неравенств х∈ [0, 1/3]
Неравенства нестрогие, скобки квадратные.
9) -(2-3х)+4(6+х)>=1
-2+3x+24+4x>=1
7x+22>=1
7x>=1-22
7x>= -21
x>= -3
х∈[-3, ∞)
Неравенства нестрогие, скобка квадратная, у знаков + - бесконечности всегда круглая.