При вычислении воспользуйтесь формулами m=-b/2a и n=f(-b/2a),где m и n координаты вершины параболы f(x) =ax^2+bx+c
Решение: а) f(x)=x²-6x+4; В приведенном уравнение b =-6, a=1 m=x=-b/2a =-(-6)/(2*1)=6/2=3 n=y(3)=3²-6*3+4=9-18+4=-5 Вершина параболы y= x² - 6x + 4 находится в точке с координатами m=х=3, n=у(3)=-5
б) f(x)=-x²-4x+1 В приведенном уравнение b =-4, a=-1 m=x=-b/2a =-(-4)/(2*(-1))=-4/2=-2 n=y(-2)=-(-2)²-4*(-2)+1=-4+8+1= 5 Вершина параболы y= -x² - 4x + 1 находится в точке с координатами m=х=-2, n=у(-2)= 5
в)f(x)=3x²-12x+2
В приведенном уравнение b =-12, a=3 m=x=-b/2a =-(-12)/(2*3)=12/6= 2 n=y(2)=3*2²-12*2+2=12-24+2= -10 Вершина параболы y= 3x²-12x+2 находится в точке с координатами m=х=2, n=у(2)= -10
а) f(x)=x²-6x+4;
б) f(x)=-x²-4x+1
в)f(x)=3x²-12x+2;
При вычислении воспользуйтесь формулами
m=-b/2a и n=f(-b/2a),где m и n координаты вершины параболы f(x) =ax^2+bx+c
Решение:
а) f(x)=x²-6x+4;
В приведенном уравнение b =-6, a=1
m=x=-b/2a =-(-6)/(2*1)=6/2=3
n=y(3)=3²-6*3+4=9-18+4=-5
Вершина параболы y= x² - 6x + 4 находится в точке с координатами m=х=3, n=у(3)=-5
б) f(x)=-x²-4x+1
В приведенном уравнение b =-4, a=-1
m=x=-b/2a =-(-4)/(2*(-1))=-4/2=-2
n=y(-2)=-(-2)²-4*(-2)+1=-4+8+1= 5
Вершина параболы y= -x² - 4x + 1 находится в точке с координатами m=х=-2, n=у(-2)= 5
в)f(x)=3x²-12x+2
В приведенном уравнение b =-12, a=3
m=x=-b/2a =-(-12)/(2*3)=12/6= 2
n=y(2)=3*2²-12*2+2=12-24+2= -10
Вершина параболы y= 3x²-12x+2 находится в точке с координатами m=х=2, n=у(2)= -10
3cos²7x+sin7x-1=0 ;
3(1-sin²7x)+sin7x -1=0 ;
3sin²7x -sin7x-2 =0 ; * * * замена t = sin7x * * *
3t² -t -2 =0 ; * * * D =1²-4*3*(-2) =5²
t₁=(1-5)/(2*3) =-2/3 ;
t₂=(1+5)/(2*3) =1.
а)
sin7x = -2/3 ⇒7x =(-1)^(n+1) arcsin(2/3) +πn ;
x =(1/7)*(-1)^(n+1) arcsin(2/3) +πn/7, n∈Z.
б)
sin7x =1⇒7x =π/2 +2πn , n∈Z
x =π/14 +2πn/7, n∈Z .
2)
8-6cos²5x+7sin5x=0 ;
8 -6(1-sin²5x+7sin5x=0 ;
6sin²5x+7sin5x +2 =0
[ sin5x= -2/3 ; sin5x = -1/2.
а)
sin5x = -2/3 ⇒5x =(-1)^(n+1) arcsin(2/3) +πn ,n∈Z ;
x =(1/5)*(-1)^(n+1) arcsin(2/3) +πn/7, n∈Z.
б)
sin5x = -1/2 ⇒5x =(-1)^(n+1)*(π/6) +πn ,n∈Z
x =(-1)^(n+1)*(π/30) +πn/5 ,n∈Z.
3)
5sin2x+9cos2x=0 ;
10sinx*cosx +9(cos²x -sin²x) =0 ;
9sin²x -10sinx*cosx -9cos²x =0 ; || \cos²x ≠0
9tq²x -10tqx -9 =0 ; * * *замена t = tqx * * *
9t² -10t -9 =0 ;* * * D/4 =5² -9*(-9)= 106 * * *
[ tqx =(5-√106)/9 ; tqx =(5+√106)/9 .
x =arctq(5-√106)/9 +πn ,n∈Z или x =arctq(5+√106)/9 +πn ,n∈Z .