В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
СофикаКис
СофикаКис
08.09.2021 19:20 •  Алгебра

Какова вероятность того,что случайным образом выбранное решение неравенства х²-3х≤0 также является решением неравенства |x-1|≥1 ? можно, по подробнее

Показать ответ
Ответ:
guardian009888
guardian009888
03.07.2020 17:29
Вероятность, ищем из соотношений решений одного и второго неравенства
1)
x^2-3x\leq0;\\
x(x-3)=0;\\
x=0 \\3
x=3;\\
x(x-3)\leq0==0\leq x\leq3== x\in[0;3];\\


2)теперь найдём решения для второго уравнения, и далее пересечение решений поделим на мрешение первого, от и вероятность
|x-1|\geq1;\\&#10;a)x\geq1==x-1\geq1==x\geq2\\&#10;x\geq1==x\in\left[2;+\infty\right);\\&#10;b)x<1;==1-x\geq1;\\&#10;x\leq0;== x\in\left(-\infty;0\right];\\&#10;
Пересечение решений на х=0 и х∈[2;3], а для первого решение х∈[0;3]
длина первого решения 1, а второго 3,
вероятность \frac{1}{3}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота