ВG=51см
AH=54 см
2,22 м прута нужно для изготовления заказа
Объяснение:
В решении используем теорему Фалеса и теорему: Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
EF=FG=GH=5, а DС=СВ=ВА (по т Фалеса) ⇒
ЕН=3*5=15 см
AD=3*3=9 см
Проведем прямую, ║АD и точки пересечения с АH, BG и CF назовем соответственно А1, B1 и С1
т.к. прямая А1Е ║AD⇒CC1=ВВ1=АА1=45
⇒C1F=48-45=3
при пересечении двух прямых секущей соответственные углы равны ⇒ΔC1EF, ΔB1EG и ΔА1ЕН подобны.
Рассмотрим ΔB1EG: т.к. C1F делит стороны B1E и GE пополам (B1C1=C1E=GF=FE) ⇒С1F - средняя линия ΔB1EG⇒ В1G=C1F*2=6
Тогда BG=45+6=51 см
Найдем коэффициент подобия ΔС1EF и А1EH:
EH/EF=15/5=3⇒
А1Н=3*3=9 ⇒
АН=45+9=54 см
Итак, длина прута =сумме длин всех отрезков:
AD=9
EH=15
DE=45
CF=48
BG=51
AH=54
9+15+45+48+51+54=222 см или 2,22 м или 2 м 22 см.
Мастер в школе хорошо освоил геометрию.
см рисунок
ВG=51см
AH=54 см
2,22 м прута нужно для изготовления заказа
Объяснение:
В решении используем теорему Фалеса и теорему: Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
EF=FG=GH=5, а DС=СВ=ВА (по т Фалеса) ⇒
ЕН=3*5=15 см
AD=3*3=9 см
Проведем прямую, ║АD и точки пересечения с АH, BG и CF назовем соответственно А1, B1 и С1
т.к. прямая А1Е ║AD⇒CC1=ВВ1=АА1=45
⇒C1F=48-45=3
при пересечении двух прямых секущей соответственные углы равны ⇒ΔC1EF, ΔB1EG и ΔА1ЕН подобны.
Рассмотрим ΔB1EG: т.к. C1F делит стороны B1E и GE пополам (B1C1=C1E=GF=FE) ⇒С1F - средняя линия ΔB1EG⇒ В1G=C1F*2=6
Тогда BG=45+6=51 см
Найдем коэффициент подобия ΔС1EF и А1EH:
EH/EF=15/5=3⇒
А1Н=3*3=9 ⇒
АН=45+9=54 см
Итак, длина прута =сумме длин всех отрезков:
AD=9
EH=15
DE=45
CF=48
BG=51
AH=54
9+15+45+48+51+54=222 см или 2,22 м или 2 м 22 см.
Мастер в школе хорошо освоил геометрию.
см рисунок
1)= =
(a+b)*(a-b) - 8*(a+b) a - b - 8
x² - y² -4x + 4y (x+y)*(x-y) - 4*(x-y) x + y - 4
2)= = =
(x+y)*(x-y) (x+y)*(x-y) x + y
(b - 1)² - c² (b - 1 + c)*(b - 1 - c) b - c - 1
3) = = =
(b + c)*(b - c) - (b - c) (b - c)*(b + c -1) b - c
10² - (x² - 2xy +y²) 10² - (x - y)²
4) = = =
10*(x + y)+ (x+y)*(x-y) (x+y) * (10 + x -y)
(10 + x - y)*(10 - x + y) 10 - x + y
= =
(10 + x - y)*(x+y) x+ y
a² - c² - b*(a + c) (a + c)*(a - c) - b*(a + c)
5)= = =
b² - (a² - 2ac +c²) b² - (a - c)²
(a + c)*(a - c - b) (a + c)*(a - b - c) c + a
= = =
(b + a - c)*(b - a + c) (b + a - c)*(-1)*(a - b - c) c - a - b
5² - (a² + 2ab +b²) 5² - (a + b)² (5 +a +b)*(5 -a -b)
6) = = = =
a² - 5² + ab + 5b (a + 5)*(a - 5)+b*(a + 5) (a+5)*(a-5+b)
(a + b + 5)*(-1)*(a + b - 5) - a - b - 5 a + b+ 5
= = = -
(a +5) * (a + b - 5) a + 5 a+ 5