Контрольная работа No8 «Разложение многочлена на множители Вариант No1
1. Преобразуйте выражение в многочлен
а) (a+b)(4а — зь)
б) (За – 2)(14а? — баb)
2. Представьте в виде произведения
а) (4х + 7)2 – 25х2
б) 49m? - (3т + 4)?
3. Разложите на множители
а) xy +5у – 3х – 15
б) х3 – 2x2 +х – 2
4. Решите уравнение
х3 – 4х = 0
5+7/75
-68
5
Любое число
3а^7
>0
Объяснение:
1)Корень из 144 - 12, корень отношения равен отношению корней, тогда корень из 16/225 равен корню из 16 делить на корень из 225, кор из 16= 4, из 225= 15. Корень некого числа в квадрате есть подкоренное число,откуда:
1/3*12+5*4/15-0,04*6=5 целых 7/75
2) корень из произведения равен произведению корней, тогда корень из 98 = корню из двух умножить на корень из 49, где второй равен 7.
150*6=900,кор из 900 = 30, корень из 7 в 4= 7 в квадрате, а из 3 в квадрате равен модулю трех, но оставим как три, тогда 49+30-49*3=-68
3)разделим обе части уравнения на 2, тогда корень из икс минус 1 = 2, возведем в квадрат, зная что 2 число больше нуля, откуда х-1=4,а значит х=5.
4)заметим, что в правой части неравенства отрицательное число, но квадратный корень по определению числу больше либо равное нулю, что всегда больше любого числа, а значит решение будет любое действительное икс( от минус беск, до +беск)
5)корень из 36 = 6, корень из а^6=а^3, для любых а,даже нуля меньших, тогда получим 3а^7(при произведении степеней с одинаковыми основаниями, основание остается то же, а показатели складываются 3+4=7)
6)Допустимые значения переменной, те значения, которые не нарушают какие-то правила в вычислениях. На нуль делить нельзя, значит, корень из икс минус 3 не равно нулю, а подкоренное - неотрицательно, значит, корень из икс не равно минус 3, что верно для всех икс, а следовательно остается только икс больше нуля.
1) √3/ 3-x² < 2/ √3-x
2/(√3-x)-√3/(√3-x)(√3+x)>0
(2√3+2x-√3)/(√3-x)(√3+x)>0
(2x+√3)/(√3-x)(√3+x)>0
x=-√3/2 x=√3 x=-√3
+ _ + _
(-√3)[-√3/2](√3)
x∈(-∞;-√3) U [-√3/2;√3)
2)3/ x²-1 - 1/2 < 3/ 2x-2
3/2(x-1)-3/(x-1)(x+1)+1/2>0
(3x+3-6+x²-1)/2(x-1)(x+1)>0
(x²+3x-4)/2(x-1)(x+1)>0
x²+3x-4=0⇒x1+x2=-3 U x1*x2=-4⇒x1=-4 U x2=1
(x+4)(x-1)/2(x-1)(x+1)>0
(x+4)/2(x+1)>0
x=-4 x=-1
+ _ + _
(-4)(-1)(1)
x∈(-∞-4) U (-1;1) U (1;∞)