1. Найдите сумму бесконечно убывающей геометрической прогрессии 36: 12; 4; ...;
b1=36
b2=12
b3=4
q=b2/b1
s=b1/(1-q)
q=-12/36=-1/3
s=36/(1+1/3)=36/(4/3)=36*3/4=27
ответ: 27
2. Сумма бесконечно убывающей геометрической прогрессии равна 54. Найти, если
Если...? Тут как будто какого-то условия не хватает ((
3. Найдите сумму и первых членов арифметической прогрессии, если а=1, an=200, n=100
Sn = (a1 + an)/2* n
a1 = 1
an = 200
n = 100
S100 = (1 + 200)/2*100 = 201*50 = 10050
ответ: 10050
Объяснение:
Проверь второе задание, там будто реально условия не хватает.
квадратный трехчлен принимает свое наибольшее значение (при a<0) ,
если x = -b/2a ; y max = - (b² -4ac) / 4a.
Учитывая еще условие y(-1)=0 ( x = -1 корень) можем написать систему уравнений :
{ -b/2a = 1 ; - (b² -4ac) / 4a =3 ; a(-1)² +b(-1) +c =0 .⇔
{ b = -2a ; -( (-2a)² -4ac) /4a =3 ; a +2a +c =0 .⇔
{ b = -2a ; c -a =3 ; c = -3a ⇔ { b = -2a ; -3a -a =3 ; c = -3a ⇔
{ b = 3/2 ; a = - 3/4 ; c = 9/4 .
y = -(3/4)x² + (3/2)x +9/4 . || (-3/4) (x² -2x -3) корни x₁= -1 ; x₂ =3 ||
Значение квадратного трехчлена при x=5 будет :
y(5) = -(3/4)*5² +(3/2)*5 +9/4 =( -3/4) (25 -10- 3) = (-3/4)*12 = -9.
ответ : - 9 .
1. Найдите сумму бесконечно убывающей геометрической прогрессии 36: 12; 4; ...;
b1=36
b2=12
b3=4
q=b2/b1
s=b1/(1-q)
q=-12/36=-1/3
s=36/(1+1/3)=36/(4/3)=36*3/4=27
ответ: 27
2. Сумма бесконечно убывающей геометрической прогрессии равна 54. Найти, если
Если...? Тут как будто какого-то условия не хватает ((
3. Найдите сумму и первых членов арифметической прогрессии, если а=1, an=200, n=100
Sn = (a1 + an)/2* n
a1 = 1
an = 200
n = 100
S100 = (1 + 200)/2*100 = 201*50 = 10050
ответ: 10050
Объяснение:
Проверь второе задание, там будто реально условия не хватает.