Арифметичною прогресією називається числова послідовність, в якій кожен наступний член, починаючи з другого, дорівнює сумі попереднього члена та сталого для даної послідовності числа. Це число називається різницею прогресії, і позначається d.
Пишуть. a1, a2, a3, …, an, ….
n-ний член арифметичної прогресії обчислюється за формулою: an=a1+d(n-1).
Геометричною прогресією називається числова послідовність, в якій кожен наступний член, починаючи з другого, дорівнює добутку попереднього члена та сталого для даної послідовності числа. Це число називається знаменником прогресії, і позначається q.
Пишуть. b1, b2, b3, …, bn, ….
n-ний член геометричної прогресії обчислюється за формулою: bn=b1q^n-1.
к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
Объяснение:
Арифметичною прогресією називається числова послідовність, в якій кожен наступний член, починаючи з другого, дорівнює сумі попереднього члена та сталого для даної послідовності числа. Це число називається різницею прогресії, і позначається d.
Пишуть. a1, a2, a3, …, an, ….
n-ний член арифметичної прогресії обчислюється за формулою: an=a1+d(n-1).
Геометричною прогресією називається числова послідовність, в якій кожен наступний член, починаючи з другого, дорівнює добутку попереднього члена та сталого для даної послідовності числа. Це число називається знаменником прогресії, і позначається q.
Пишуть. b1, b2, b3, …, bn, ….
n-ний член геометричної прогресії обчислюється за формулою: bn=b1q^n-1.
ответ: ниа.
объяснение:
к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
сos px = a; sin gx = b; tg kx = c; ctg tx = d.