В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Strong996
Strong996
18.03.2022 21:06 •  Алгебра

Квадратное уравнение ax^2+bx+c=0 имеет ненулевые корни x_1 и x_2. Запишите квадратное уравнение с корнями 1/x_1 и 1/x_1 (укажите ограничения на коэффициенты a, b, `c).

Показать ответ
Ответ:
lerakim735
lerakim735
12.02.2021 16:55

(\star )\ \ ax^2+bx+c=0\ ,\ a\ne 0\ \\\\x_1\ ,\ x_2\ -\ korni\ \ \ \Rightarrow \ \ \ teorema\ Vieta:\ \left\{\begin{array}{l}x_1\cdot x_2=\dfrac{c}{a}\\x_1+x_2=-\dfrac{b}{a}\end{array}\right\\\\\\(\star \star )\ \ x^2+px+q=0\ ,\ \ \dfrac{1}{x_1}\ ,\ \dfrac{1}{x_2}\ -\ korni\ \ \Rightarrow \ teor.\ Vieta:\left\{\begin{array}{c}\dfrac{1}{x_1}\cdot \dfrac{1}{x_2}=q\\\dfrac{1}{x_1}+\dfrac{1}{x_2}=-p\end{array}\right

\left\{\begin{array}{l}\dfrac{1}{x_1x_2}=q\\\\\dfrac{x_1+x_2}{x_1x_2}=-p\end{array}\right\ \ \left\{\begin{array}{c}\dfrac{1}{\frac{c}{a}}=q\\\\\dfrac{-\frac{b}{a}}{\frac{c}{a}}=-p\end{array}\right\ \ \ \left\{\begin{array}{ccc}\dfrac{a}{c}=q\\\\-\dfrac{b}{c}=-p\end{array}\right\ \ \left\{\begin{array}{ccc}\dfrac{a}{c}=q\\\\\dfrac{b}{c}=p\end{array}\right

x^2+px+q=x^2+\dfrac{b}{c}\, x+\dfrac{a}{c}=\dfrac{cx^2+bx+a}{c}=0\ \ ,\ c\ne 0\ \ \ \Longrightarrow \\\\\\(\star \star )\ \ \underline {\ cx^2+bx+a\0\ \ \ ,\ \ a,c\ne 0\ }

В квадратном уравнение  (\star \star ), которое имеет корни, обратные корням

квадратного уравнения  (\star )  , меняются местами коэффициенты  a  и  c ,

причём  a\ne 0\ ,\ c\ne 0  .

0,0(0 оценок)
Ответ:
salihvalishev
salihvalishev
12.02.2021 16:55

Запишем данное уравнение в более удобном виде:

ax^2+bx+c=0; (предполагается, что а=/=0)

Теорема Виета:

x1*x2=c/a,

x1+x2=-b/a.

Новое уравнение ищем в виде:

Ax^2+Bx+C=0

Опять Виет: (при условии, что с=/=0)

C/A=1/x1*1/x2=1/(x1*x2)=a/c, отсюда C=(a/c)*A

-B/A=1/x1+1/x2=(x2+x1)/(x1*x2)=(-b/a)/(c/a)=-b/c, отсюда B=(b/c)*A

Итак, Ax^2+(b/c)*Ax+(a/c)*A=0, и окончательно:

cx^2+bx+a=0

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота