б) если рассмотреть равенство: x² + (y+1)² = 4
то график этого уравнения --это окружность с центром в (0; -1) радиуса 2.
уравнение окружности с центром (x₀; y₀) радиуса R: (х-х₀)² + (y-y₀)² = R²
в задании знак неравенства "больше", т.е. это часть плоскости ВНЕ круга, включая границу (окружность)
например: точка (2;-3)
2² + (-3+1)² ≥ 4 верно...
а) неравенство с модулем со знаком "меньше" равносильно двойному неравенству: -2 < y-x-1 < 2 (прибавим 1)
-1 < y-x < 3
двойное неравенство равносильно системе неравенств (пересечению промежутков):
{y-x<3
{y-x>-1
или
{ y < x+3 (часть плоскости НИЖЕ (знак "<") прямой у=х+3)
{ y > x-1 (часть плоскости ВЫШЕ (знак ">") прямой у=x-1)
это полоса между параллельными прямыми...
и всегда можно проверить...
например, точка (2;-1) не принадлежит этому множеству...
|-1-2-1| < 2 неверно
точка (0;0) принадлежит этому множеству...
|0-0-1| < 2 верно
1) (a+b)² (a-b) - 2ab(b-a) - 6ab(a-b) =(a -b)³ .
(a+b)² (a-b) - 2ab(b-a) - 6ab(a-b) =(a-b)( ( a+b)² +2ab - 6ab ) =
(a-b)(a² +2ab +b² +2ab -6ab) =(a-b)(a² -2ab +b² ) =(a-b)(a -b)² =(a -b)³ .
---
2) (a² +b²)(a⁴ - a²b² +b⁴) +(a³ -b³)(a³ +b³ ) =2a⁶.
(a² +b²)(a⁴ - a²b² +b⁴) +(a³ -b³)(a³ +b³ ) = (a²)³ +(b²)³ +(a³)² -(b³)² =
(a²)³ +(b²)³ +(a³)² - (b³)² =a⁶ +b⁶ + a⁶ - b⁶ =2a⁶.
---
3) (a²+b²)(c²+d²)= (ac+bd)²+(ad-bc)² .
(a²+b²)(c²+d²) =a²c² +a²d² + b²c² + b²d² =
(a²c² +2*ac*bd+ b²d²) +(a²d² - 2*ad*bc+ b²c² ) = (ac+bd)²+(ad-bc)² .
---
4) (a²+cb²)(d²+ce²) = (ad+cbe)²+c(ae - bd)² .
(a²+cb²)(d²+ce²) =a²d² +a²ce² + cb²d² +c²b²e² =(a²d² +c²b²e²) +c(a²e² + b²d²) =
(a²d² + 2*ad*cbe+c²b²e²) +c(a²e² - 2ae*bd+ b²d²) = (ad+cbe)²+c(ae - bd)².
б) если рассмотреть равенство: x² + (y+1)² = 4
то график этого уравнения --это окружность с центром в (0; -1) радиуса 2.
уравнение окружности с центром (x₀; y₀) радиуса R: (х-х₀)² + (y-y₀)² = R²
в задании знак неравенства "больше", т.е. это часть плоскости ВНЕ круга, включая границу (окружность)
например: точка (2;-3)
2² + (-3+1)² ≥ 4 верно...
а) неравенство с модулем со знаком "меньше" равносильно двойному неравенству: -2 < y-x-1 < 2 (прибавим 1)
-1 < y-x < 3
двойное неравенство равносильно системе неравенств (пересечению промежутков):
{y-x<3
{y-x>-1
или
{ y < x+3 (часть плоскости НИЖЕ (знак "<") прямой у=х+3)
{ y > x-1 (часть плоскости ВЫШЕ (знак ">") прямой у=x-1)
это полоса между параллельными прямыми...
и всегда можно проверить...
например, точка (2;-1) не принадлежит этому множеству...
|-1-2-1| < 2 неверно
точка (0;0) принадлежит этому множеству...
|0-0-1| < 2 верно