▪Сравним: (4/3)√2 и (6/5)√2, т.к. в левой и правой части √2 = √2, значит будем сравнивать: (4/3) и (6/5) ▪чтобы сравнить 4/3 и 6/5 приведем дроби к НОЗ = 15: 4/3 = 20/15 6/5 = 18/15 ▪сравним: 20/15 > 18/15 (т.к. знаменатели равны сравниваем только числители 20>18)
▪Вывод:
20/15 > 18/15, значит 4/3 > 6/5 соответственно (4/3)√2 > (6/5)√2, (1/3)√32 > (1/5)√72 М > N
объяснение:
путь скорость время
туда х км 15 км/ч х/15 ч
обратно х км 10 км/ч х/ 10 ч
составим уравнение: х/10 - х/15 = 1 | · 30
3 x - 2x = 30
x = 30 (км)
N = (1/5)√72 = 1/5 × √36 × √2 = 1/5 × √(6^2) × √2 = 1/5 × 6√2 = (6/5)√2;
▪Сравним:
(4/3)√2 и (6/5)√2,
т.к. в левой и правой части √2 = √2, значит будем сравнивать:
(4/3) и (6/5)
▪чтобы сравнить 4/3 и 6/5 приведем дроби к НОЗ = 15:
4/3 = 20/15
6/5 = 18/15
▪сравним:
20/15 > 18/15
(т.к. знаменатели равны сравниваем только числители 20>18)
▪Вывод:
20/15 > 18/15, значит
4/3 > 6/5 соответственно
(4/3)√2 > (6/5)√2,
(1/3)√32 > (1/5)√72
М > N