Пусть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [Величина s введена для удобства, она потом сократится]. Тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. Время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x. Второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2):(x-15) = s/(2*(x-15)), а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. По условию, t1 = t2_1+t2_2. Получаем уравнение:
s/x = s/(2*(x-15)) + s/180
Сократим (как и было обещано J ) на s и решим уравнение.
Пусть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [Величина s введена для удобства, она потом сократится]. Тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. Время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x. Второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2):(x-15) = s/(2*(x-15)), а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. По условию, t1 = t2_1+t2_2. Получаем уравнение:
s/x = s/(2*(x-15)) + s/180
Сократим (как и было обещано J ) на s и решим уравнение.
1/x = 1/(2*(x-15)) + 1/180 (2)
2*(x-15)*180 = 180*x + 2*(x-15)*x
(x-15)*180 = 90*x + (x-15)*x
180*x – 15*180 = 90*x + x2 – 15*x
180*x – 15*180 = 90*x + x2 – 15*x
x2 + (90-15 – 180)*x +15*180 = 0
x2 — 105*x +15*180 = 0
Решим полученное квадратное уравнение.
D = 1052 – 4*15*180 = (7*15)2 – 4*15*(15*12) =
= 152*(72 – 4*12) = 152*(49 – 48) = 152
Следовательно, уравнение (2) имеет 2 корня:
x1 = (105+15)/2 = 60; x2 = (105-15)/2 = 45
Так как x>54, то x=60
ответ 60
х^3-x^2-6x=0 2. {x^2+y^2=74 x=12-y
x(x^2-x-6)=0 {X+y=12 (12-y)^2=74
x=0 x^2-x-6=0 144-24y+y^2+y^2=74
D=1+24=25 2 y^2-24y+70=0
x1=(1+5)/2=3 D=576-560= 16
x2=(1-5)/2=-2 y1=(24+4)4=7
y2=(24-4)/4=5
x1=12-7=5
x2=12-5=7
3.v=1/3Пr^3 R=(3V /П) ^1/3