В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
пончик123456798
пончик123456798
17.12.2021 06:29 •  Алгебра

M^3+3m^2+5m+3.доказать,что кратно 3.

Показать ответ
Ответ:
BMBelenapertsevanika
BMBelenapertsevanika
05.10.2020 00:07
Тут видимо имеются ввиду натуральные m. Достаточно доказать что m³+3m²+5m кратно 3. Тогда и сумма этого выражения и тройки будет кратна 3.
Применим метод мат.индукции:
Для m=1 m³+3m²+5m кратно 3. Докажем, что если выражение кратно 3 для какого то натурального k, то и для k+1 оно тоже будет кратно 3. В самом деле:
(k+1)³+3(k+1)²+5(k+1)=(k+1)[(k+1)²+3(k+1)+5]=(k+1)(k²+5k+9)=k³+5k²+9k+k²+5k+9=k³+3k²+5k+3k²+9k+9=(k³+3k²+5k)+3(k²+3k+3)
Первая скобка делится на 3 по предположению, со второй все ясно, значит их сумма делится на 3.
Из доказанного утверждения и того факта, что при m=1 выражение кратно 3 следует что оно кратно 3 для всех натуральных m. Значит и m³+3m²+5m+3 кратно 3. Что и требовалось.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота