Марта записала на доске в строку 10 чисел, причём каждое последующее (начиная с третьего) было равно сумме двух предыдущих. Юля случайно стёрла все числа, кроме крайних. На доске осталось только первое и последнее число: -2 и Марте восстановить остальные числа.
x2 - 13x + 22 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-13)2 - 4·1·22 = 169 - 88 = 81Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x1 = 13 - √81 2·1 = 13 - 9 2 = 4 2 = 2x2 = 13 + √81 2·1 = 13 + 9 2 = 22 2 = 11
5x2 + 8x - 4 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = 82 - 4·5·(-4) = 64 + 80 = 144Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x1 = -8 - √144 2·5 = -8 - 12 10 = -20 10 = -2x2 = -8 + √144 2·5 = -8 + 12 10 = 4 10 = 0.4
(х-4)^ 2=0x^2 - 8x + 16 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-8)2 - 4·1·16 = 64 - 64 = 0Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:x = 8 2·1 = 4
x2 + 2x + 3 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = 22 - 4·1·3 = 4 - 12 = -8Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
(х-8)(х+3)=0x^2 -5x -24=0x2 - 5x - 24 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-5)2 - 4·1·(-24) = 25 + 96 = 121Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x1 = 5 - √121 2·1 = 5 - 11 2 = -6 2 = -3x2 = 5 + √121 2·1 = 5 + 11 2 = 16 2 = 8
В окружность вписан правильный шестиугольник, который состоит из правильных треугольников. У правильного треугольника все стороны равны. Следовательно, основание треугольника равно радиусу вписанной окружности а=R. Площадь правильного треугольника S=V3a^2/4, а площадь правильного шестиугольника в 6 раз больше и равна S=3V3a^2/2. (значок V - обозначение корня квадратного)ю Подставим: 72V3= 3V3a^2/2, сократим на V3 и получим 72=3 a^2/2; 48=a^2 a= 4V3=R. L=2П*4V3=8V3П
ответ: L=8V3П см