Мастер и ученик должны были выполнить работу к определенному сроку.однако когда была выполнена половина работы ученик заболел и мастер оставшись один закончил работу с опазданием на 2 дня.за сколько дней могбы выполнить всю работу каждый из них работая по одному если мастеру на это потребовалось бы на 5 дней меньше чем ученику? решить дробным квадратным уравнением
х-производительность мастера в день
у-производительность ученика в день
Система уравнений
Первое
0,5/х=0,5/(х+у)+2
0,5/(х+у)-0,5/х+2=0 разделим на 0,5
1/(х+у)-1/х+4=0 умножим на х(х+у)
х-(х+у)+4х(х+у)=0
х-х-у+4х²+4ху=0
-у+4х²+4ху=0
у-4ху=4х²
у(1-4х)=4х²
у=4х²/(1-4х)
Второе
1/у-1/х=5 умножим на ху
х-у=5ху
у+5ху=х
у(1+5х)=х
у=х/(1+5х)
4х²/(1-4х)=х/(1+5х) делим на х
4х/(1-4х)=1/(1+5х)
1-4х=4х(1+5х)
1-4х=4х+20х²
20х²+8х-1=0
D= 8² - 4·20·(-1) = 64 + 80 = 144
x1 = (-8 - √144)/(2*20) = (-8 - 12)/40 = -20/40 = -0.5не подходит
x2 = (-8 + √144)/(2*20) = (-8 +12)/40 = 4/40 =0,1
1:0,1=10 дней-понадобится мастеру
10+5=15 дней-понадобится ученику