В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
AlinaFlowers
AlinaFlowers
10.04.2023 21:22 •  Алгебра

Меч работы гномов стоил 53 золотых. При покупке 5 таких мечей со скидкой 10% люди Нуменора привезли 1077 золот(-ых, -ой). Сколько денег они увезут обратно после расчёта

Показать ответ
Ответ:
CrowOnix
CrowOnix
15.01.2021 18:10

@a4gandon667:JerryneokЗнакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Чтобы закреплять, добавлять или удалять фрагменты, используйте значок редактирования.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Чтобы закреплять, добавлять или удалять фрагменты, используйте значок редактирования.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Чтобы закреплять, добавлять или удалять фрагменты, используйте значок редактирования.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Чтобы закреплять, добавлять или удалять фрагменты, используйте значок редактирования.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Чтобы закреплять, добавлять или удалять фрагменты, используйте значок редактирования.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Чтобы закреплять, добавлять или удалять фрагменты, используйте значок редактирования.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.

0,0(0 оценок)
Ответ:
taniussa1
taniussa1
16.04.2023 07:24

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота