можно банально вычитать из первого члена прогрессии (a1) разность (d) до тех пор пока не дойдешь до тех членов, которые спрашивают (если дойдешь), но так не интересно, поэтому есть
an = a1+(n-1)d
a1 - первый член прогрессии
d - разность между членами прогрессии
an - n-ый член прогрессии
n - номер члена прогрессии
n принадлежит z, что значить номер прогрессии - целое число.
поэтому, если получится целое число в итоге, то член существует, иначе нет.
Решаем:
а) 2,5
an = a1+(n-1)d
an = 2,5
a1 = 17,5
d = -1,5
n - ?
выразим n:
n = (an - a1 + d)/d
n = (2,5 - 17,5 -1,5)/(-1,5) = -16,5/(-1,5) = 11
целое число получилось => есть в прогрессии (под номером 11)
б) -6
n = (-6-17,5-1,5)(-1,5) = -25/(-1,5) = 16 2/3
получилось дробное число, поэтому -6 не является членом арифметической прогрессии
пусть данная дробь a/(a+2), тогда обратная дробь (a+2)/a, и новая дробь
(а+2-3)/а=(а-1)/а
получаем уравнение:
(а-1)/а - а/(а+2) = 1/15
переносим 1/15 влево и приводим к общему знаменателю
Для удобства я знаменатель писать не буду, он будет 15а(а+2). Пишу только числитель:
15(а+2)(а-1)-15а^2-a(a+2)
15a^2-15a+30a-30-15a^2-a^2-2a=0 (потому что дробь равно 0 тогда, когда числитель равен 0, а знаменатель не равен 0, значит имеем ввиду, что а не может быть равно 0,1 и -2) и ищем, когда числитель равен 0:
-a^2+13a-30=0
D=169-120
D=49
а=(-13+-7)/-2
а=10 ; 3
10 нам не подходит, поскольку по условию исходная дробь - несократимая, значит она не может быть 10/12, значит ответ: 3/5
а) да; б) нет
Объяснение:
можно банально вычитать из первого члена прогрессии (a1) разность (d) до тех пор пока не дойдешь до тех членов, которые спрашивают (если дойдешь), но так не интересно, поэтому есть
an = a1+(n-1)d
a1 - первый член прогрессии
d - разность между членами прогрессии
an - n-ый член прогрессии
n - номер члена прогрессии
n принадлежит z, что значить номер прогрессии - целое число.
поэтому, если получится целое число в итоге, то член существует, иначе нет.
Решаем:
а) 2,5
an = a1+(n-1)d
an = 2,5
a1 = 17,5
d = -1,5
n - ?
выразим n:
n = (an - a1 + d)/d
n = (2,5 - 17,5 -1,5)/(-1,5) = -16,5/(-1,5) = 11
целое число получилось => есть в прогрессии (под номером 11)
б) -6
n = (-6-17,5-1,5)(-1,5) = -25/(-1,5) = 16 2/3
получилось дробное число, поэтому -6 не является членом арифметической прогрессии
пусть данная дробь a/(a+2), тогда обратная дробь (a+2)/a, и новая дробь
(а+2-3)/а=(а-1)/а
получаем уравнение:
(а-1)/а - а/(а+2) = 1/15
переносим 1/15 влево и приводим к общему знаменателю
Для удобства я знаменатель писать не буду, он будет 15а(а+2). Пишу только числитель:
15(а+2)(а-1)-15а^2-a(a+2)
15a^2-15a+30a-30-15a^2-a^2-2a=0 (потому что дробь равно 0 тогда, когда числитель равен 0, а знаменатель не равен 0, значит имеем ввиду, что а не может быть равно 0,1 и -2) и ищем, когда числитель равен 0:
-a^2+13a-30=0
D=169-120
D=49
а=(-13+-7)/-2
а=10 ; 3
10 нам не подходит, поскольку по условию исходная дробь - несократимая, значит она не может быть 10/12, значит ответ: 3/5