Может ли одна и та же величина быть зависимой величиной и незави
симой величиной? Приведите пример.
2. Может ли область определения функции стоимости от цены содержат
отрицательное число; нуль; смешанное положительное число?
3. Может ли одна и та же функция быть одновременно возрастающей
убывающей на всей области определения?
4. Существуют ли функции, которые не являются ни возрастающими, и
убывающими?
2x-y+3z+d=0 - прямая, параллельная плоскости 2x-y+3z-1=0
Подставим в уравнение координаты точки М и найдём свободный член d:
2*2-(-5)+3(-3)+d=0
4+5-9+d=0
0+d=0
d=0
2x-y+3z=0 - искомое уравнение плоскости
2) 5x+4y-z-7=0 M(2;-5;-3)
5x+4y-z+d=0 - прямая, параллельная плоскости 5x+4y-z-7=0
Подставим в уравнение координаты точки М и найдём свободный член d:
5*2+4(-5)-(-3)+d=0
10-20+3+d=0
-7+d=0
d=7
5x+4y-z+7=0 - искомое уравнение плоскости
Пусть в турнире участвовало N человек.
Каждый сыграл в турнире N-1 партию (со всеми, кроме себя), т.е. все вместе сыграли N*(N-1) партий.
НО! Каждая партия игралась двумя участниками, т.е. при первом подсчета мы каждую отдельно сыгранную партию посчитали два раза (для первого участника и для второго), следовательно общее число сыгранных партий будет равно N*(N-1)/2.
Поскольку в шахматной партии разыгрывается ровно одно очко, то всего очков в турнире было разыграно столько, сколько было сыграно партий, т.е. N*(N-1)/2.
Игрок, занявший первое место выиграл все партии, а сыграл он N-1 партию, значит и очков он набрал ровно столько.
Следуя этим заключениям можем записать уравнение:
5*(N-1) = N*(N-1)/2 - (N-1)
Количество очков первого игрока, умноженное на пять, равно общему числу очков без учета набранных первым (т.е. количеству очков, набранных остальными участниками).
Теперь осталось решить уравнение. Делим его на (N-1).
5 = N/2 - 1
Вполне очевидно, что N>1, поэтому выполненное деление вполне допустимо (делим не на ноль).
N/2 = 6
N=12
Т.е. всего участников в турнире было 12
Победитель набрал 11 очков из 66 возможных, т.е. в 5 раз больше чем остальные.
ответ: 12 человек участвовало в турнире.