Можно с подробным решением? Граница относительной погрешности измерения сопротивления 0,02%. Найти границы истинного значения сопротивления, если показание R=7,72 Ом.
Сначало превращаем 63 34/35 в неправильную дробь. Что бы преобразовать необходимо целое тоесть 63 умножить на знаменатель- 35 и прибавить числитель- 34 , в числитель записываем число которое у нас получилось, а знаменатель остаётся тот же.
63•35+34/35= 2239/35
2. потом преобразовываем 5,4 в смешанное число, получается 5 целых 4 десятых
5 4/10 сокращаем тоесть 4 делим на 2 и 10 тоже делим на 2
5 4/10=5 2/5 и преобразовываем в неправильную дробь
(5•5+2/5) 5 2/5= 27/5
приводим 2239/35 и 27/5 к общему знаменателю,а то есть находим Нок 5 и 35 . Нок это 35 , таким образом мы 2239/35 оставляем так же, а 27/5 и числитель и знаменатель умножаем на 7( умножаем на 7 потому что, чтобы получилось 35 надо 5 умножить именно на 7)
(27•5 / 5•5) получается 2239/35+189/35 складываем только числители
2428/35
Объяснение:
Сначало превращаем 63 34/35 в неправильную дробь. Что бы преобразовать необходимо целое тоесть 63 умножить на знаменатель- 35 и прибавить числитель- 34 , в числитель записываем число которое у нас получилось, а знаменатель остаётся тот же.63•35+34/35= 2239/35
2. потом преобразовываем 5,4 в смешанное число, получается 5 целых 4 десятых
5 4/10 сокращаем тоесть 4 делим на 2 и 10 тоже делим на 2
5 4/10=5 2/5 и преобразовываем в неправильную дробь
(5•5+2/5) 5 2/5= 27/5
приводим 2239/35 и 27/5 к общему знаменателю,а то есть находим Нок 5 и 35 . Нок это 35 , таким образом мы 2239/35 оставляем так же, а 27/5 и числитель и знаменатель умножаем на 7( умножаем на 7 потому что, чтобы получилось 35 надо 5 умножить именно на 7)(27•5 / 5•5) получается 2239/35+189/35 складываем только числители
2239/35+189/35=2428/35
Коротко:63 34/35+ 5,4 = 2239/35+5 4/10= 2239/35+5 2/5=
2239/35+27/5 = 2239/35+189/35= 2428/35
= (4b+a)(3a²b² + 4b- a)
2) 49c² -14c+1 -21ac+3a = (49c²-14c+1) -3a(7c - 1) = (7c - 1)² - 3a(7c - 1) =
=(7c-1)(7c - 1 - 3a)
3)ax²+ay²+x^4+2x²y²+y^4 = a(x²+y²)+(x^4+2x²y²+y^4) = a(x²+y²) +(x²+y²)²=
= (x²+y²) (a +x²+y²)
4) 27c³-d³+9c²+3cd+d² = [(3c)³-d³]+ (9c²+3cd+d²) =
=[(3c - d)(9c²+3cd+d²)] + (9c²+3cd+d²) = (9c²+3cd+d²) (3c-d+1)
5) b³-2b²-2b+1 =(b³ + 1) - 2b( b+1) = (b+1)(b² -b+1) - 2b(b+1) =
= (b+1)(b² -b+1-2b) = (b+1)(b² -3b+1)