В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
vannyporchun
vannyporchun
15.01.2023 20:40 •  Алгебра

На данной прямой находятся точки M(1;2) и N(0;1). Определи коэффициенты в уравнении этой прямой. (Если коэффициенты отрицательные, вводи их вместе со знаком «−», без скобок.) −1x+__y+__=0

Показать ответ
Ответ:
Lora20060
Lora20060
24.03.2020 21:21

ПРИМЕР №1. Найти остаток от деления уголком.

Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой

2.

x6 + 2x5 - x3 + x x4 - 4x + 2

x6 - 4x3 + 2x2 x2

2x5 + 3x3 - 2x2 + x

3.

x6 + 2x5 - x3 + x x4 - 4x + 2

x6 - 4x3 + 2x2 x2 + 2x

2x5 + 3x3 - 2x2 + x

2x5 - 8x2 + 4x

3x3 + 6x2 - 3x

Целая часть: x + 2

Остаток: 3x2 + 6x - 3

ПРИМЕР №2.. Разделить многочлены столбиком.

Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой

2.

x3 - 2x2 + x + 3 - 2x - 3

x3 + 3/2x2 - 1/2x2

- 7/2x2 + x + 3

3.

x3 - 2x2 + x + 3 - 2x - 3

x3 + 3/2x2 - 1/2x2 + 7/4x

- 7/2x2 + x + 3

- 7/2x2 - 21/4x

25/4x + 3

4.

x3 - 2x2 + x + 3 - 2x - 3

x3 + 3/2x2 - 1/2x2 + 7/4x - 25/8

- 7/2x2 + x + 3

- 7/2x2 - 21/4x

25/4x + 3

25/4x + 75/8

- 51/8

Целая часть: - 1/2x2 + 7/4x - 25/8

Остаток: - 51/8

0,0(0 оценок)
Ответ:
Егор1123321
Егор1123321
29.05.2022 15:34
y= \dfrac{2.5|x|-1}{|x|-2.5x^2} = \dfrac{2.5|x|-1}{-|x|(2.5|x|-1)}=- \dfrac{1}{|x|}

Строим гиперболу y=-\dfrac{1}{x} и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)

Область определения: \displaystyle \left \{ {{|x|\ne0} \atop {2.5|x|-1\ne0}} \right. ~~~\Rightarrow~~~~ \left \{ {{x\ne 0} \atop {x\ne \pm0.4}} \right.

Подставим у=кх в упрощенную функцию.

kx=- \dfrac{1}{|x|}              (*)

Очевидно, что при k=0 уравнение   (*) решений не будет иметь.

1) Если x>0, то kx^2=-1 и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).

2) Если x<0, то kx^2=1 и при k<0 это уравнение решений не имеет.

Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.

Подставим теперь x=\pm0.4, имеем

k\cdot (-0.4)=- \dfrac{1}{0.4} \\ \\ k=6.25                                         k\cdot 0.4=- \dfrac{1}{0.4} \\ \\ k=-6.25

Итак, при k=0 и k=±6.25 графики не будут иметь общих точек

Постройте график функции у=2,5|х|-1/|х|-2,5х^2 и определитель,при каких значениях k прямая у=kx не и
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота