На диаграмме показано процентное распределение бюджета семьи на месяц. Какое каличество денег откладывается в резерв, если месячный бюджет составляет 100000.1) 20000, 2)13000, 3)42000, 4) 15000.
Запишем данный многочлен в виде 2*(x³+5/2*x²+1/2*x-1). Для того, чтобы разложить многочлен в скобках на множители, нужно решить уравнение x³+5/2*x²+1/2*x-1=0. Это - приведённое кубическое уравнение, поэтому одним из его целых корней (если они есть) может быть целый делитель свободного члена данного уравнения, то есть числа -1. Таких делителей всего два: 1 и -1. Подставляя значения x=1 и x=-1 в данное уравнение, находим, что число x=1 не является корнем уравнения, а число x=-1 - является. Теперь разделим многочлен x³+5/2*x²+1/2*x-1 на двучлен x-(-1)=x+1. После этого получим тождество x³+5/2*x²+1/2*x-1=(x+1)*(x²+3/2*x-1). Теперь разложим на множители квадратный трёхчлен x²+3/2*x-1, для чего нужно решить уравнение x²+3/2*x-1=0. Оно имеет корни x1=1/2 и x2=-2, поэтому x²+3/2*x-1=0=(x-1/2)*(x+2). Тогда x³+5/2*x²+1/2*x-1=(x+1)*(x-1/2)*(x+2) и окончательно 2*x³+5*x²+x-2=(x+1)*(x+2)*(2*x-1).
ответ: 2*x³+5*x²+x-2=(x+1)*(x+2)*(2*x-1).
Объяснение:
Запишем данный многочлен в виде 2*(x³+5/2*x²+1/2*x-1). Для того, чтобы разложить многочлен в скобках на множители, нужно решить уравнение x³+5/2*x²+1/2*x-1=0. Это - приведённое кубическое уравнение, поэтому одним из его целых корней (если они есть) может быть целый делитель свободного члена данного уравнения, то есть числа -1. Таких делителей всего два: 1 и -1. Подставляя значения x=1 и x=-1 в данное уравнение, находим, что число x=1 не является корнем уравнения, а число x=-1 - является. Теперь разделим многочлен x³+5/2*x²+1/2*x-1 на двучлен x-(-1)=x+1. После этого получим тождество x³+5/2*x²+1/2*x-1=(x+1)*(x²+3/2*x-1). Теперь разложим на множители квадратный трёхчлен x²+3/2*x-1, для чего нужно решить уравнение x²+3/2*x-1=0. Оно имеет корни x1=1/2 и x2=-2, поэтому x²+3/2*x-1=0=(x-1/2)*(x+2). Тогда x³+5/2*x²+1/2*x-1=(x+1)*(x-1/2)*(x+2) и окончательно 2*x³+5*x²+x-2=(x+1)*(x+2)*(2*x-1).
(1+4x-x²)-20/(4x-x²)>0
((1+4x-x²)(4x-x²)-20)/(x(4-x))>0
(4x+16x²-4x³-x²-4x³+x⁴-20)/(x(4-x))>0
(x⁴-8x³+15x²+4x-20)/(x(4-x)>0
x⁴-8x³+15x²+4x-20=0
x₁=2
x⁴-8x³+15x²+4x-20 I_x-2_
x⁴-2x³ I x³-6x²+3x+10
-6x³+15x²
-6x³+12x²
3x²+4x
3x²-6x
10x-20
10x-20
0
x³-6x²+3x+10=0
x₂=2
x³-6x²+3x+10 I_x-2_
x³-2x² I x²-4x-5
-4x²+3x
-4x²+8x
-5x+10
-5x+10
0
x²-4x-5=0 D=36
x₃=-1 x₄=5. ⇒
(x-2)²(x+1)(x-5)/(x(4-x)>0
-∞--1+0__-__2__-__4+5-+∞
x∈(-1;0)U(4;5).
∑дл. инт.=(0-(-1))+(5-4)=1+1=2.
ответ: ∑дл. инт.=2.