На математическом кружке не более 97 человек. На нём есть Даши (хотя бы одна). Если выбрать наугад одного ученика, вероятность, что он умнее любой Даши — 29. А вероятность, что он глупее любой Даши — 27. Вероятность, что ученик, носящий имя, отличное от имени Даша, не умнее и не глупее всех Даш — не менее 38. Какое наибольшее число девочек с именем Даша может быть на кружке?
1. x^2 + 2x + a = 0
2. D = 2^2 - 4 * 1a
3. D = 4 - 4a
4. (4 - 4a > 0
(4 - 4a = 0
(4 - 4a < 0
5. (a < 1
(a = 1
(a > 1
6. (a < 1 , 2 действительных корня.
(a = 1 , 1 действительный корень.
(a > 1 , нет действительных корней.
Объяснение:
1. Определим количество корней с дискриминанта: D = b^2 - 4ac.
2. Упростим выражение.
3. Есть три возможных случая: D > 0, D = 0, D < 0.
4.1 Решим неравенство относительно a.
4.2 Решим уравнение относительно a.
4.3 Решим неравенство относительно a.
5. Когда D > 0, есть 2 действительных корня, когда D = 0, есть 1 действительный корень, когда D < 0, нет действительных корней.
Объяснение:
Пусть детский билет стоит — х (икс) рублей, а взрослый билет — у (игрек) рублей. Тогда первая семья заплатила: х · 2 + у = 440 (руб.), а вторая семья: х · 3 + у · 2 = 789 (руб.). Выразим из первого уравнения значение игрека (у = 440 – х · 2) и подставим его во второе уравнение:
х · 3 + (440 – х · 2) · 2 = 780;
х · 3 + 880 – х · 4 = 780;
- х = 780 – 880;
- х = - 100;
х = 100 (руб.) — цена детского билета.
Найдем цену взрослого билета: у = 440 – х · 2 = 440 – 100 · 2 = 240 (руб.).
ответ: один детский билет стоит 100 рублей, а взрослый — 240 рублей.