На рисунке 8 изображен график некоторой функции. Пользуясь графиком найдите: 1) Значение функции y, если x=-5;-4,5;-2;-1;0;1;3; 2) Значения x, которым соответствует значение y=-2;-1,5;3; 3) Значения аргумента, при которых значение функции равно нулю; 4) Область определения и область значений функции.
. Первого игрока команды можно выбрать среди 15 спортсменов, то есть . Второго игрока команды можно выбрать среди оставшийся 14 спортсменов, то есть . Точно также, третьего игрока команды можно выбрать , четвёртого игрока команды можно выбрать , и наконец, пятого игрока команды можно выбрать .
Однако каждая команда при этом подсчете учтена несколько раз: одна и та же пятёрка спортсменов может быть выбрана по разному, например, сначала А, потом В, потом С, потом D, потом E, или сначала B, потом А, потом C, потом D, потом E и так далее. Поскольку число перестановок из пяти элементов равно 5!=120, то каждая команда учтена нами ровно 120 раз. Поэтому получается, что команду из 5 игроков можно выбрать
.
. Применим формулу комбинаторики.
Определение. Пусть имеется множество, содержащее n элементов. Произвольный неупорядоченный набор, состоящий из k различных элементов данного множества, называется сочетанием из n элементов по k элементов (или просто сочетанием из n по k).
Число сочетаний из n элементов по k элементов обозначается и вычисляется по формуле:
Объяснение:
Задачу можно решить различными .
. Первого игрока команды можно выбрать среди 15 спортсменов, то есть . Второго игрока команды можно выбрать среди оставшийся 14 спортсменов, то есть . Точно также, третьего игрока команды можно выбрать , четвёртого игрока команды можно выбрать , и наконец, пятого игрока команды можно выбрать .
Однако каждая команда при этом подсчете учтена несколько раз: одна и та же пятёрка спортсменов может быть выбрана по разному, например, сначала А, потом В, потом С, потом D, потом E, или сначала B, потом А, потом C, потом D, потом E и так далее. Поскольку число перестановок из пяти элементов равно 5!=120, то каждая команда учтена нами ровно 120 раз. Поэтому получается, что команду из 5 игроков можно выбрать
.
. Применим формулу комбинаторики.
Определение. Пусть имеется множество, содержащее n элементов. Произвольный неупорядоченный набор, состоящий из k различных элементов данного множества, называется сочетанием из n элементов по k элементов (или просто сочетанием из n по k).
Число сочетаний из n элементов по k элементов обозначается и вычисляется по формуле:
Так как n = 15 и k = 5, то
Объяснение:
1. 25х – 17 - 4х - 5 = -13х + 14 + 34х
приведем подобные слагаемые, получим: 21х - 22 = 21х + 14
перенесем х в одну сторону, числа в другую, получим: 0х = 36
при умножении на 0 любого числа получится всегда 0, тоесть равенство никогда не будет верным — корней нет
2. 10 - 4х + 3 = 9х – 2 - 6х + 9 - 7х + 6
приведем подобные слагаемые, получим: 13 - 4х = -4х + 13
перенесем х в одну сторону, числа в другую, получим: 0х = 0
при умножении любого числа на 0 всегда получится 0, тоесть равенство всегда будет верно, при любом значении х
3. возьмем ширину за х, тогда длина будет 2х, P участка = длине забора, длина забора = 6х; 6х = 120, х = 20м 2х = 40м