Пусть х - скорость Николь, тогда 2х - скорость Бренды и 4х - скорость Сандры. Пусть также t1 - время от начала забега, через которое встретились Сандра и Бренда, t2 - время от начала забега, через которое встретились Сандра и Николь и S - длина дорожки. Тогда, т.к. скорость сближения Сандры и Бренды равна 4х+2х=6х, а до момента встречи они вместе пробежали общую дистанцию равную одному кругу, то 6х*t1=S. Аналогично, скорость сближения Сандры и Николь равна 4х+х=5х, поэтому 5х*t2=S. Далее, т.к. от момента встречи с Брендой до момента встречи с Николь Сандра пробежала 200 м со скоростью 4х, то 4x*(t2-t1)=200. Таким образом, получаем систему из трех уравнений: 6х*t1=S; 5x*t2=S; 4x*(t2-t1)=200. Из первых двух уравнений t1=S/(6x), t2=S/(5x). Значит, 4х*(S/(5x)-S/(6x))=200. Отсюда 4х*S/(30x)=200 2S/15=200 S/15=100 S=15*100=1500 м. ответ: (В) длина дорожки равна 1500 м.
1) 4x^2 - 12= 0
4x^2 = 12
x^2=3
x=+-3 (x= плюс минус 3)
x1 = -√3
x2 = √3
2)7x^2 + 5x= 0
x·(7x+5)=0
x=0 или 7x+5=0
x1=0 x2 = -5/7
3)x^2 - 6x - 16 = 0
x^2 + 2x - 8x - 16 = 0
x·(x+2)-8(x+2)=0
(x+2)·(x-8)=0
x+2=0 или x-8=0
x1=-2 x2=8
4)15x^2 - 4x - 3 = 0
15x^2+5x-9x-3=0
5x·(3x+1)-3·(3x+1)=0
(3x+1)·(5x-3)=0
3x+1=0 или 5x-3=0
3x=-1 5x=3
x=-1/3 x=3/5
5)x^2 - 7x + 4 = 0
D=7^2-4·1·4=49-16=33
\frac{7-\sqrt{33} }{2} https://tex.z-dn.net/?f=%5Cfrac%7B7-%5Csqrt%7B33%7D%20%7D%7B2%7D%20
x1=7-√33/2 (7-√33, а под ними черта дроби, которая делит эту разность на 2)
x2=7+√33/2
6)x^2 + 5x + 9 = 0
x=-5±√5²-4x·1·9 и разделить на 2·1
x=-5±√25-36 и разделить на 2
x=-5±√-11 и разделить на 2
дальше решить вроде нельзя(
6х*t1=S;
5x*t2=S;
4x*(t2-t1)=200.
Из первых двух уравнений t1=S/(6x), t2=S/(5x). Значит,
4х*(S/(5x)-S/(6x))=200. Отсюда
4х*S/(30x)=200
2S/15=200
S/15=100
S=15*100=1500 м.
ответ: (В) длина дорожки равна 1500 м.