Пусть Р равнобедренного треугольника=в+2а, где в- основание, а-бедро(боковая сторона)треугольника, тогда по условию 18=8+2а 2а=18-8 2а=10 а=10:2 а=5 см Для нахождения площади треугольника Применим теорему Пифагора Поскольку высота треугольника делит основание пополам, то длина половины основания будет равна 8 / 2 = 4 см Высота с половиной основания и стороной равнобедренного треугольника образует прямоугольный треугольник. Соответственно, высота основания будет равна:
h = √ 5^2 - 4^2 = √9 = 3 см Площадь равнобедренного треугольника будет равна площади двух прямоугольных треугольников, образованных боковыми сторонами, высотой и половинами основания равнобедренного треугольника. Применив формулу площади прямоугольного треугольника, получим: S = 4 * 3/ 2 = 6 см2 Поскольку прямоугольных треугольников два, то общая площадь равнобедренного треугольника составит: 6 * 2 =12 см2
2а=18-8
2а=10
а=10:2 а=5 см
Для нахождения площади треугольника Применим теорему Пифагора
Поскольку высота треугольника делит основание пополам, то длина половины основания будет равна 8 / 2 = 4 см
Высота с половиной основания и стороной равнобедренного треугольника образует прямоугольный треугольник. Соответственно, высота основания будет равна:
h = √ 5^2 - 4^2 = √9 = 3 см Площадь равнобедренного треугольника будет равна площади двух прямоугольных треугольников, образованных боковыми сторонами, высотой и половинами основания равнобедренного треугольника. Применив формулу площади прямоугольного треугольника, получим:
S = 4 * 3/ 2 = 6 см2
Поскольку прямоугольных треугольников два, то общая площадь равнобедренного треугольника составит:
6 * 2 =12 см2
ответ:Раскроем скобки:
Тогда наша задача сводится к тому, чтобы доказать, что (n-1)(n+1) при любом нечетном n кратно 8.
Любое нечётное число можно представить в виде: n = 2k+1, k∈Z (Z - множество целых чисел)
Теперь задача сводится к тому, чтобы доказать, что k(k+1) при любом целом k кратно 2.
Пусть k = 0, тогда произведение равно 0 и отсюда следует, что произведение кратно 2;
Пусть k - нечётное число, тогда k+1 - чётное. Произведение не чётного числа на чётное будет чётным и, следовательно, кратным 2.
Аналогично если k - чётное число.
На основании вышеизложенного приходим к выводу, что (4n+1)² – (n+4)² при любом нечётном n кратно 120.
Объяснение: