на свій день народження дві сестри отримали разом 127 повідомлень причому перша отримала на 13 більше ніж друга скільки повідомлень отримала кожна сестра
№1 Так как треугольник прямоугольный, значит один угол равен 90 градусов. Нам дан еще один угол, который равен 29 гр. А мы знаем, что в треугольнике сумма всех углов равна 180 градусов. => 180-(90+29)=180-119=61 гр. ответ: 61 №2 Так как треугольник равнобедренный, то углы при основании равны. Угол А= углу С. Можно найти любой из этих углов: (180- угол В):2 =(180-120):2=30 Получаем что угол С и А равны по 30 гр. Высота равна 8см. Сторону ВС можно найти с синуса угла С. (Синус 30гр=1/2) 1/2=8/ВС ВС=4 ответ: 4 см.
к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
Так как треугольник прямоугольный, значит один угол равен 90 градусов. Нам дан еще один угол, который равен 29 гр. А мы знаем, что в треугольнике сумма всех углов равна 180 градусов. =>
180-(90+29)=180-119=61 гр.
ответ: 61
№2
Так как треугольник равнобедренный, то углы при основании равны. Угол А= углу С. Можно найти любой из этих углов:
(180- угол В):2 =(180-120):2=30
Получаем что угол С и А равны по 30 гр.
Высота равна 8см.
Сторону ВС можно найти с синуса угла С. (Синус 30гр=1/2)
1/2=8/ВС
ВС=4
ответ: 4 см.
ответ: ниа.
объяснение:
к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
сos px = a; sin gx = b; tg kx = c; ctg tx = d.