№155 x√-19x+18=0 x√+17x-18=0 (x√-19x+18)²=(0)² (x√+17x-18)²=(0)² x²-19x+18=0 x²+17x-18=0 D=361-72=289 D=289+72=361 x1=(19-17)/2=1 x1=(-17+19)/2=1 x2=(19+17)/2=36/2=18 x2=(-17-19)/2=-36/2=-18 № 157 решать нужно через теорему виета. аx²+bx+c=0 x1+x2=-b/a x1*x2=с/а теперь просто подставь значения вместо х1 и х2 в первом x1+x2=-b/a у тебя будет значение b во втором x1*x2=с/а у тебя будет значение с а=1 потом в уравнение подставь значение x²+bx+c=0
4
Объяснение:
а)ОДЗ:
{ tan(x) ≥0 (Т.к. подкоренное выражение всегда неотрицательно)
{ cos(x) ≠0 (Т.к. тангенс это синус, делённый на косинус,а на ноль делить нельзя)
Произведение равно нулю,когда хотя бы один из множителей равен нулю
1) 2sin²(x)-3cos(x) = 0
Из основного тригонометрического тождества sin²(x)+cos²(x) = 1 выразим синус
sin²(x) = 1-cos²(x)
2(1-cos²(x))-3cos(x) = 0
2-2cos²(x)-3cos(x) = 0|:(-1)
2cos²(x)+3cos(x)-2 = 0
Пусть cos(x) = t, -1 ≤ t ≤ 1, тогда
2t²+3t-2 = 0
D = 3²-4*2*(-2) = 9+16 = 25 = 5²
Второй корень меньше -1,поэтому мы его рассматривать не будем
Вернёмся к замене
Если t = 0,5, тогда
cos(x) = 0,5
Это равенство распадается на совокупность двух:
[ x = arccos(0,5) + 2пn, n∈Z
[ x = -arccos(0,5) + 2пn, n∈Z
[ x = п/3 + 2пn, n∈Z
[ x = -п/3 + 2пn, n∈Z
Второй корень не подходит по ОДЗ,так что единственное решение этого равенства x = п/3 + 2пn, n∈Z
2)
Дробь равна нулю,когда числитель равен нулю,а знаменатель не равен нулю
{ sin(x) = 0
{ cos(x) ≠ 0
{ х = пn, n∈Z
{ x ≠ п/2 + пn, n∈Z
Пересечений с ОДЗ нет,поэтому наше решение входит в ответ
б) Находим количество решений на отрезке [0;2П] ( см. вложение)
По рисунку мы видим,что у уравнения на данном отрезке 4 корня(0,п/3,п,2п)
x√-19x+18=0 x√+17x-18=0
(x√-19x+18)²=(0)² (x√+17x-18)²=(0)²
x²-19x+18=0 x²+17x-18=0
D=361-72=289 D=289+72=361
x1=(19-17)/2=1 x1=(-17+19)/2=1
x2=(19+17)/2=36/2=18 x2=(-17-19)/2=-36/2=-18
№ 157
решать нужно через теорему виета.
аx²+bx+c=0
x1+x2=-b/a
x1*x2=с/а
теперь просто подставь значения вместо х1 и х2
в первом x1+x2=-b/a у тебя будет значение b
во втором x1*x2=с/а у тебя будет значение с
а=1
потом в уравнение подставь значение x²+bx+c=0