Да я те отвечаю))Ну а сеьезно Значение неизвестной величиной, для которой из данного уравнения мы получим истинное числовое равенство, называется корнем этого уравнения. Два уравнения называются эквивалентными, если множества их корней совпадают, корни первого уравнения являются также корнями второго и наоборот. Действуют следующие правила: 1. Если в данном уравнении значение заменяется другим, но идентичным, мы получаем уравнение, эквивалентное данному. 2. Если в данном уравнении некоторое значение переносится из одной стороны на другую с противоположным знаком, мы получаем уравнение, эквивалентное (равное) заданному. 3. Если мы умножаем или делим обе стороны уравнения на одно и то же число, отличное от нуля, мы получаем уравнение, эквивалентное заданному. Уравнение вида ax + b = 0, где a, b - заданные числа, называется простым уравнением по отношению к неизвестной величине х.
В точке пересечения значения x и y для обеих прямых будут равны. Отсюда: a) y=2x+3 и y=3x+2: приравниваем их, получаем: 2x+3=3x+2 -x=-1 x=1 y=2*1+3=5 Прямые пересекутся в точке (1;5) б) y=-15x-14 y=-15+8x (или y=-15х+8?) -15x-14=-15+8x или -15x-14=-15x+8 -23x=-1 -14=8 - решений нет, прямые не пересекаются x=1/23 15 y=-15/23-14=-14--- 23 Прямые пересекаются в точке (1/23;-14 15/23)
в) 7x+4=-x+4 8x=0 x=0 y=-0+4=4 Прямые пересекаются в точке (0;4)
г) y=7x+6 y=7x+9 7x+6=7x+9 6≠9 прямые не пересекаются
1. Если в данном уравнении значение заменяется другим, но идентичным, мы получаем уравнение, эквивалентное данному.
2. Если в данном уравнении некоторое значение переносится из одной стороны на другую с противоположным знаком, мы получаем уравнение, эквивалентное (равное) заданному.
3. Если мы умножаем или делим обе стороны уравнения на одно и то же число, отличное от нуля, мы получаем уравнение, эквивалентное заданному.
Уравнение вида ax + b = 0, где a, b - заданные числа, называется простым уравнением по отношению к неизвестной величине х.
Отсюда:
a) y=2x+3 и y=3x+2: приравниваем их, получаем:
2x+3=3x+2
-x=-1
x=1
y=2*1+3=5
Прямые пересекутся в точке (1;5)
б) y=-15x-14 y=-15+8x (или y=-15х+8?)
-15x-14=-15+8x или -15x-14=-15x+8
-23x=-1 -14=8 - решений нет, прямые не пересекаются
x=1/23
15
y=-15/23-14=-14---
23
Прямые пересекаются в точке (1/23;-14 15/23)
в) 7x+4=-x+4
8x=0
x=0
y=-0+4=4
Прямые пересекаются в точке (0;4)
г) y=7x+6 y=7x+9
7x+6=7x+9
6≠9
прямые не пересекаются