Число в чётной степени всегда будет положительным (если знак минус тоже под знаком степени).
В пункте а равными выражениями являются (a-b)^2 и (b-a)^2. Так как в выражении -(a-b)^2 знак минус стоит за скобкой, данное число будет отрицательным. Поэтому -(a-b)^2 противоположно и (a-b)^2, и (b-a)^2. (Пары противоположных решений: 1) -(a-b)^2 и (a-b)^2; 2) -(a-b)^2 и (b-a)^2.
В пункте б степень нечётная, поэтому обращаем внимание и на знак, который стоит под знаком степени. Пара равных выражений: (b-a)^3 и -(a-b)^3. Пары противоположных выражений: (a-b)^3 и (b-a)^3; (a-b)^3 и -(a-b)^3.
В пункте в степень снова чётная. Поэтому: Пара равных выражений: (a-b)^4 и (b-a)^4. Пары противоположных выражений: (a-b)^4 и -(a-b)^4; (b-a)^4 и -(a-b)^4.
Выберите линейное уравнение с двумя переменными:
г) 3х-у = 18
Линейные уравнения с двумя переменными – это уравнение вида ax+by+c=0, где x, y - переменные, a, b,c – некоторые числа.
Найдите решение уравнения 2х+3у =2.
Чтобы найти какие пары чисел являются решением уравнения подставим каждую пару в уравнение:
а) (-5;-4)
2*(-5)+3(-4)=2
-22≠2 ⇒ не является решением уравнения
б) (5;-4)
2*5+3*(-4)=2
-2≠2 ⇒ не является решением уравнения
в) (-5;4)
2*(-5)+3*4=2
2=2 ⇒ является решением уравнения
г) (5;4)
2*5+3*4=2
22≠2 ⇒ не является решением уравнения
График уравнения 4х+2у-3 = 0 пересекает ось абсцисс в точке:
Ось авсцисс - это ось ОХ.
4х+2у-3 = 0
2у=-4х+3
у=-2х+1,5
у=0
-2х+1,5=0
х=0,75
г)(0,75; 0)
В пункте а равными выражениями являются (a-b)^2 и (b-a)^2.
Так как в выражении -(a-b)^2 знак минус стоит за скобкой, данное число будет отрицательным. Поэтому -(a-b)^2 противоположно и (a-b)^2, и (b-a)^2.
(Пары противоположных решений: 1) -(a-b)^2 и (a-b)^2; 2) -(a-b)^2 и (b-a)^2.
В пункте б степень нечётная, поэтому обращаем внимание и на знак, который стоит под знаком степени.
Пара равных выражений: (b-a)^3 и -(a-b)^3.
Пары противоположных выражений: (a-b)^3 и (b-a)^3; (a-b)^3 и -(a-b)^3.
В пункте в степень снова чётная. Поэтому:
Пара равных выражений: (a-b)^4 и (b-a)^4.
Пары противоположных выражений: (a-b)^4 и -(a-b)^4; (b-a)^4 и -(a-b)^4.
Darknight (Sunny Storm)