б). (в знаменателе выносим "y" и сокращаем с "y" в числителе)
ответ:
в). (раскрываем числитель по формуле разности квадратов , в знаменателе выносим "3")
ответ:
Задание №2
а). (одинаковый знаменатель, значит можно складывать)
ответ:
б). (знаменатели разные, чтобы сложить приводим к общему знаменателю. Первую дробь умножаем на 4, вторую умножаем на 5, после чего складываем)
ответ:
в). (принцип тот же. "а" есть и там, и там в знаменателе, значит первую дробь умножаем на 3, вторую умножаем на 2, чтобы получить общий знаменатель, после чего вычитаем)
ответ:
г). (знаменатель одинаковый - складываем)
ответ: 2
Задание №3
а). (умножаем первую дробь на a, а вторую умножаем на 2, после чего вычитаем дроби)
ответ:
б). (первую дробь умножаем на знаменатель второй дроби, а вторую дробь умножаем на знаменатель первой дроби, после чего вычитаем)
(ещё можно свернуть по формуле разности квадратов )
ответ:
в). (вынесем "b" в знаменателе второй дроби за скобку и умножим первую дробь на "b", после чего вычитаем)
ответ:
Задание №4
(приведем к общему знаменателю умножив на "2y", после чего сложим)
(теперь подставляем x = -8 и y = 0,1. Десятичное число 0,2 = дроби . Когда получилась трёхэтажная дробь, то знаменатель дроби в знаменателе переносится в числитель и умножается на числитель общей дроби, а знаменатель становится числитель дроби в знаменателе)
ответ: -40
Задание №5
(знаменатель средней дроби раскроем по формуле разности квадратов .
Первую дробь умножим на "х" и на "x+4", среднюю дробь умножим на "х", а третью дробь умножим на "x+4" и на "x-4", после чего посчитаем)
-3
Объяснение:
Хорошо, что дали картинку, потому что текстом вы написали полную кашу, в которой ничего непонятно.
(7x+3y)/(x+5y) + (3x-2y)/(2x+y) = 4
Можно попробовать выразить y через x.
Умножим все на (x+5y)(2x+y) и избавимся от дробей.
(7x+3y)(2x+y) + (3x-2y)(x+5y) = 4(x+5y)(2x+y)
14x^2 + 6xy + 7xy + 3y^2 + 3x^2 - 2xy + 15xy - 10y^2 = 8x^2 + 40xy + 4xy + 20y^2
Приводим подобные и собираем все в левой части:
(17-8)x^2 + (13+13-44)xy + (-7-20)y^2 = 0
9x^2 - 18xy - 27y^2 = 0
Делим всё на 9
x^2 - 2xy - 3y^2 = 0
Делим всё на y^2
(x/y)^2 - 2(x/y) - 3 = 0
Обозначим x/y = n
n^2 - 2n - 3 = 0
(n+1)(n-3) = 0
1) n = x/y = -1; x = -y; x^2 = y^2, тогда:
t = (x^2 + 2y^2)/(x^2 - 2y^2) = 3y^2/(-y^2) = -3
2) n = x/y = 3; x = 3y; x^2 = 9y^2, тогда:
t = (x^2 + 2y^2)/(x^2 - 2y^2) = 11y^2/(7y^2) = 11/7
Наименьшее из чисел (-3; 11/7) = -3
Задание №1
а). (сокращаем на "13y")
ответ:
б). (в знаменателе выносим "y" и сокращаем с "y" в числителе)
ответ:
в). (раскрываем числитель по формуле разности квадратов , в знаменателе выносим "3")
ответ:
Задание №2
а). (одинаковый знаменатель, значит можно складывать)
ответ:
б). (знаменатели разные, чтобы сложить приводим к общему знаменателю. Первую дробь умножаем на 4, вторую умножаем на 5, после чего складываем)
ответ:
в). (принцип тот же. "а" есть и там, и там в знаменателе, значит первую дробь умножаем на 3, вторую умножаем на 2, чтобы получить общий знаменатель, после чего вычитаем)
ответ:
г). (знаменатель одинаковый - складываем)
ответ: 2
Задание №3
а). (умножаем первую дробь на a, а вторую умножаем на 2, после чего вычитаем дроби)
ответ:
б). (первую дробь умножаем на знаменатель второй дроби, а вторую дробь умножаем на знаменатель первой дроби, после чего вычитаем)
(ещё можно свернуть по формуле разности квадратов )
ответ:
в). (вынесем "b" в знаменателе второй дроби за скобку и умножим первую дробь на "b", после чего вычитаем)
ответ:
Задание №4
(приведем к общему знаменателю умножив на "2y", после чего сложим)
(теперь подставляем x = -8 и y = 0,1. Десятичное число 0,2 = дроби . Когда получилась трёхэтажная дробь, то знаменатель дроби в знаменателе переносится в числитель и умножается на числитель общей дроби, а знаменатель становится числитель дроби в знаменателе)
ответ: -40
Задание №5
(знаменатель средней дроби раскроем по формуле разности квадратов .
Первую дробь умножим на "х" и на "x+4", среднюю дробь умножим на "х", а третью дробь умножим на "x+4" и на "x-4", после чего посчитаем)
ответ: