Пусть х - искомое число, тогда
(100-х) - первое вновь полученное число
(30+х) - третье вновь полученное число.
По условию произведение вновь полученных чисел равно квадрату второго числа, получаем уравнение:
(100-х)·(30+х) = 60²
3000-30х+100х-х² = 3600
-х²+70х-600 = 0
Делим обе части уравнения на (-1)
х²-70х+600 = 0
D = 4900-4·1·600=4900-2400= 2500 = 50²
x₁ = 10
x₂ = 60
1) Проверим х₁=10.
(100-10)·(30+10) = 60²
90 · 40 = 3600
3600 = 3600 верное равенство
2) Проверим x₂=60.
(100-60)·(30+60) = 60²
40 · 90 = 3600
ответ: 10; 60
1. 2 целых 10/14;
2. в) 5x² - x + 1 = 0
Пошаговое объяснение:
1. 7x² - 19x + 4 = 0
D = b² - 4ac
D = -19² - 4 * 7 * 4 = 361 - 112 = 249
x₁ = (-b + √D)/2a
x₁ = (19 + √249)/2 * 7
x₂ = (-b - √D)/2a
x₂ = (19 - √249)/2 * 7
Сумма корней = x₁ + x₂
(19 + √249)/2 * 7 + (19 - √249)/2 * 7 = (19 + √249 + 19 - √249)/14 = 38/14 = 2 целых 10/14
2. Квадратное уравнение не имеет корней, если его дискриминант отрицательный (Формула дискриминанта выше). Проверим каждое уравнение:
a) 4x² - 3x - 4 = 0
D = 9 - 4 * 4 * (-4) = 9 + 64 = 73 ==> имеет корни;
б) x² + 4x + 3 = 0
D = 16 - 4 * 3 = 16 - 12 = 4 ==> имеет корни;
в) 5x² - x + 1 = 0
D = 1 - 4 * 5 * 1 = 1 - 20 = -19 < 0 ==> не имеет корней.
Пусть х - искомое число, тогда
(100-х) - первое вновь полученное число
(30+х) - третье вновь полученное число.
По условию произведение вновь полученных чисел равно квадрату второго числа, получаем уравнение:
(100-х)·(30+х) = 60²
3000-30х+100х-х² = 3600
-х²+70х-600 = 0
Делим обе части уравнения на (-1)
х²-70х+600 = 0
D = 4900-4·1·600=4900-2400= 2500 = 50²
x₁ = 10
x₂ = 60
1) Проверим х₁=10.
(100-10)·(30+10) = 60²
90 · 40 = 3600
3600 = 3600 верное равенство
2) Проверим x₂=60.
(100-60)·(30+60) = 60²
40 · 90 = 3600
3600 = 3600 верное равенство
ответ: 10; 60
1. 2 целых 10/14;
2. в) 5x² - x + 1 = 0
Пошаговое объяснение:
1. 7x² - 19x + 4 = 0
D = b² - 4ac
D = -19² - 4 * 7 * 4 = 361 - 112 = 249
x₁ = (-b + √D)/2a
x₁ = (19 + √249)/2 * 7
x₂ = (-b - √D)/2a
x₂ = (19 - √249)/2 * 7
Сумма корней = x₁ + x₂
(19 + √249)/2 * 7 + (19 - √249)/2 * 7 = (19 + √249 + 19 - √249)/14 = 38/14 = 2 целых 10/14
2. Квадратное уравнение не имеет корней, если его дискриминант отрицательный (Формула дискриминанта выше). Проверим каждое уравнение:
a) 4x² - 3x - 4 = 0
D = 9 - 4 * 4 * (-4) = 9 + 64 = 73 ==> имеет корни;
б) x² + 4x + 3 = 0
D = 16 - 4 * 3 = 16 - 12 = 4 ==> имеет корни;
в) 5x² - x + 1 = 0
D = 1 - 4 * 5 * 1 = 1 - 20 = -19 < 0 ==> не имеет корней.