Напишите закон полного распределения случайной величины, предполагая, что неизвестные значения случайной величины образуют одну арифметическую прогрессию с заданными членами, а их соответствующие вероятности дают регулярность в соотношении 1: 3,5: 3,5: 1.
Пирамида SABCD, ABCD - квадрат в основании, SH - высота, H - точка пересечения диагоналей квадрата. SH1 - высота треугольника SDC. H1 соединим s H. SH1 перпендикулярен DC, HH1 так же перпендикулярен DC, значит <SH1H - линейный угол двугранного угла SDCH, следовательно <SH1H = 60°.
SH перпендикулярен HH1, так как перпендикулярен плоскости основания, следовательно и любой линии, лежащей в этой плоскости. Из прямоугольного треугольника SHH1:
sin<HH1S = SH/SH1
SH1*sin60° = 4√3
SH1*√3/2 = 4√3
SH1 = 8
По теореме пифагора: HH1² = SH1² - SH²
HH1² = 64 - 48 = 16
HH1 = 4
Рассмотрим треугольники CHH1 и CAD. Они подобны (один угол общих, два остальных - соответственные углы при пересечении двух параллельных прямых третьей).
2HC = AC (диагонали квадрата точкой пересечения делятся на две равные части)
Значит: AC/HC = AD/HH1
2HC/HC = AD/HH1
AD = 2HH1
AD = 2*4 = 8
Sбок = Pосн*h, где h - апофема
Sбок = Pосн*SH1 = (4*8)*8 = 256
Sосн = AD² = 8² = 64
Sполн = Sбок + Sосн = 256 + 64 = 320
ответ: 320
найти максимум, х∈(0, 40).
найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х
она равна 3х²-208х+2560
найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0
1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3=
=(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3=
=(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16
ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
вот как-то так...-))