В следующий раз создавайте для каждого задания отдельные темы пусть x - цифра едениц, y - цифра десяток. Тогда число = x + 10*y
x^2 + y^2 = 3*x*y + 1
и
(x + 10*y)/(x + y) - 6/(x + y) = 7
(Это система уравнений)
Упрощаем первое уравнение:
(x - y)^2 = xy + 1
Второе:
(x + 10*y - 6)/(x + y) = 7
x + 10*y - 6 = 7x + 7y
y = 2 + 2x
y = 2*(1 + x)
Возвращаемся к системе:
Заменили y на 2 + 2x:
(x - 2 - 2x)^2 = 2x*(1 + x) + 1
(-x - 2)^2 = 2x + 2x^2 + 1
x^2 + 4x + 4 = 2x + 2x^2 + 1
x^2 - 2x - 3 = 0
два корня x = -1 и x = 3. -1 не подходит, ибо нет такой цифры. Значит 3. Подставляем во второе уравнение.
y = 2*(1 + 3) = 8.
ответ: число - 83.
x²- 8x + 67 < 0
y(x) = x² - 8x + 67 - это квадратичная функция; у которой ветви направлены вверх, так как коэффициент перед х² равен 1, то есть он больше нуля.
Сначала решим квадратное уравнение:
x²- 8x + 67 = 0
Д = 64 - 4·67 = - 204 < 0 корней нет
Если Дискриминант меньше нуля, то данная парабола вся полностью лежит выше оси ОХ, и она не будет пересекать эту ось ОХ .
Поэтому, все значения функции будут только положительными.
Следовательно, x²- 8x + 67 < 0 не имеет решений.
В следующий раз создавайте для каждого задания отдельные темы пусть x - цифра едениц, y - цифра десяток. Тогда число = x + 10*y
x^2 + y^2 = 3*x*y + 1
и
(x + 10*y)/(x + y) - 6/(x + y) = 7
(Это система уравнений)
Упрощаем первое уравнение:
x^2 + y^2 = 3*x*y + 1
(x - y)^2 = xy + 1
Второе:
(x + 10*y)/(x + y) - 6/(x + y) = 7
(x + 10*y - 6)/(x + y) = 7
x + 10*y - 6 = 7x + 7y
y = 2 + 2x
y = 2*(1 + x)
Возвращаемся к системе:
(x - y)^2 = xy + 1
и
y = 2*(1 + x)
Заменили y на 2 + 2x:
(x - 2 - 2x)^2 = 2x*(1 + x) + 1
и
y = 2*(1 + x)
(-x - 2)^2 = 2x + 2x^2 + 1
и
y = 2*(1 + x)
x^2 + 4x + 4 = 2x + 2x^2 + 1
и
y = 2*(1 + x)
x^2 - 2x - 3 = 0
и
y = 2*(1 + x)
два корня x = -1 и x = 3. -1 не подходит, ибо нет такой цифры. Значит 3. Подставляем во второе уравнение.
y = 2*(1 + 3) = 8.
ответ: число - 83.