В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
katya022
katya022
03.09.2021 00:53 •  Алгебра

Найди двузначное число, зная, что его 2 меньше числа десятков, произведение этого числа на сумму его цифр равно 252.​

Показать ответ
Ответ:
ник41111
ник41111
06.01.2023 21:16

Объяснение:

Мы докажем это равенство по индукции. Но сначала преобразуем правую часть равенства к более удобному для нас виду:

\frac{1}{12} (2n^6+6n^5+5n^4-n^2)=\frac{n^2(2n^4+6n^3+5n^2-1)}{12} =\frac{n^2(2n^4+2n^3+4n^3+4n^2+n^2+n-n-1)}{12} =\frac{n^2(2n^3(n+1)+4n^2(n+1)+n(n+1)-(n+1))}{12} =\frac{n^2(n+1)(2n^3+4n^2+n-1)}{12} =\\=\frac{n^2(n+1)(2n^3+2n^2+2n^2+2n-n-1)}{12} =\frac{n^2(n+1)(2n^2(n+1)+2n(n+1)-(n+1))}{12}=\frac{n^2(n+1)^2(2n^2+2n-1)}{12}А вот теперь применим индукцию. Легко проверить, что для n=1 равенство верно.

Теперь предположим что равенство верно для n=k:

1^5+2^5+...+k^5=\frac{k^2(k+1)^2(2k^2+2k-1)}{12}

Прибавив к обеим частям равенства (k+1)^5 получим:

1^5+2^5+...+k^5+(k+1)^5=\frac{k^2(k+1)^2(2k^2+2k-1)}{12}+(k+1)^5

Займёмся преобразованием правой части этого равенства:

\frac{k^2(k+1)^2(2k^2+2k-1)}{12}+(k+1)^5=(k+1)^2\bigg(\frac{k^2(2k^2+2k-1)}{12} +(k+1)^3\bigg)=\\=\frac{(k+1)^2}{12} \big(k^2(2k^2+2k-1)+12(k^3+3k^2+3k+1)\big)=\\=\frac{(k+1)^2}{12}\big(2k^4+14k^3+35k^2+36k+12\big)=\frac{(k+1)^2(2k^4+4k^3+10k^3+20k^2+15k^2+30k+6k+12)}{12}=\\=\frac{(k+1)^2(2k^3(k+2)+10k^2(k+2)+15k(k+2)+6(k+2))}{12}=\frac{(k+1)^2(k+2)(2k^3+10k^2+15k+6)}{12}=\\=\frac{(k+1)^2(k+2)(2k^3+4k^2+6k^2+12k+3k+6)}{12}=\frac{(k+1)^2(k+2)(2k^2(k+2)+6k(k+2)+3(k+2))}{12}==\frac{(k+1)^2(k+2)^2(2k^2+6k+3)}{12}=\frac{(k+1)^2(k+2)^2(2(k+1)^2+2k+1)}{12}=\frac{(k+1)^2(k+2)^2(2(k+1)^2+2(k+1)-1)}{12}Таким образом

1^5+2^5+...+k^5+(k+1)^5=\frac{(k+1)^2(k+2)^2(2(k+1)^2+2(k+1)-1)}{12}

То есть если равенство верно для произвольного n=k, то оно также оказывается верным и для n=k+1. По индукции заключаем верность равенства для любого натурального n.

Если же вас интересует каким можно вывести формулу, которую мы только что доказали - напишите мне в ЛС.

0,0(0 оценок)
Ответ:
maksimlimanskiy
maksimlimanskiy
26.12.2022 07:08

Объяснение:

Заданная функция является квадратной, та как содержит квадрат переменной х. Графиком такой функции является парабола, ветви которой будут направлены вверх, так как перед квадратом х условно стоит знак «плюс».

Построить график такой функции можно подбором значений х и вычислением соответствующих значений функции у (это один из вариантов, самый простой), а также можно воспользоваться услугами построения графиков онлайн.

Подберем несколько координат точек, через которые пройдет данный график.

При х = 0 функция у(0) = 0^2 – 4 * 0 – 5 = –5 – точка (0; –5).

При х = 1 функция у(1) = 1^2 – 4 * 1 – 5 = –8 – точка (1; –8).

При х = –1 функция у(–1) = (–1)^2 – 4 * (–1) – 5 = 0 – точка (–1; 0).

При х = 2 функция у(2) = 2^2 – 4 * 2 – 5 = –9 – точка (2; –9).

При х = 3 функция у(3) = 3^2 – 4 * 3 – 5 = –8 – точка (3; –8).

При х = 4 функция у(4) = 4^2 – 4 * 4 – 5 = –5 – точка (4; –5).

При х = 5 функция у(5) = 5^2 – 4 * 5 – 5 = 0 – точка (5; 0).

Этих точек достаточно.

а) при х = 0,5 функция равна –6,75 – это можно проверить, подставив значение 0,5 вместо х в уравнение функции;

в) нули функции для промежутков у>0 и у<0;

г) промежуток, на котором функция будет возрастающей.

б) у = 3 при значениях х –1,5 и х = 5,5;

в) нулями функции есть точки (–1;0) и (5;0);

г) функция возрастает на промежутке, на котором х больше 2.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота