Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.
13 деталей
Объяснение:
Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.
Первой скобке видим квадрат суммы, который сворачиваем по формуле сокращенного умножение
x * (x + 2)² = 3 * (x + 2)
x * (x + 2)² - 3 * (x + 2) = 0
(x + 2) * (x * (x + 2) - 3) = 0
(x + 2) * (x² + 2x - 3) = 0
Произведение равно нулю, когда хотя бы один из множителей равен нулю
1) x + 2 = 0
x₁ = -2
2) x² + 2x - 3 = 0
D = 2² - 4 * 1 * (-3) = 4 + 12 = 16 > 0 ⇒уравнение имеет 2 корня
√D = 4
- 2 + 4
x₂ = = 2/2 = 1
2
-2 - 4
x₃= = -6/2 = -3
2
Проверка1
-2 * ((-2)² + 4 * (-2) + 4) = 3 * (-2 + 2)
-2 * (4 - 8 + 4) = 3 * 0
-2 * 0 = 0
0 = 0
Проверка2
1( 1^2+4*1+4)=3(1+2)
1+4+4 = 3*3
9 = 9
Проверка3
-3*( (-3)^2+4*(-3)+4)=3*(-3+2)
-3*(9-12+4) = 3*(-1)
-3*1 = -3
-3 = -3