Решение
По теореме Виета имеем: x₁ + x₂ = 2n
x₁ * x₂ = 22n² + 8n
x₁² + x₂² = (x₁+ x₂)² – 2x₁*x₂ = (2n)² – 2*(22n² + 8n) =
= 4n² – 44n² – 16n = - 40n² – 16n
f(n) = - 40n² – 16n
f `(n) = - 80n - 16
- 80n – 16 = 0
80n = - 16
n= - 1/5
D = 4n² – 4*(22n² + 8n) = 4n² – 88n² – 32n = - 84n² – 32n
- 84n² – 32n > 0
- 4n(21n + 8) > 0
4n(21n + 8) < 0
4n(21n + 8) = 0
n₁ = 0
21n + 8 = 0
n₂ = - 8/21
+ - +
à
-8/21 0 x
- 1/5 ∈ [- 8/21; 0]
при значении параметра n = - 1/5 сумма квадратов корней
уравнения x² − 2nx + 22n² + 8n = 0 будет наибольшей
ответ: n = - 1/5
Объяснение:
Решение
По теореме Виета имеем: x₁ + x₂ = 2n
x₁ * x₂ = 22n² + 8n
x₁² + x₂² = (x₁+ x₂)² – 2x₁*x₂ = (2n)² – 2*(22n² + 8n) =
= 4n² – 44n² – 16n = - 40n² – 16n
f(n) = - 40n² – 16n
f `(n) = - 80n - 16
- 80n – 16 = 0
80n = - 16
n= - 1/5
D = 4n² – 4*(22n² + 8n) = 4n² – 88n² – 32n = - 84n² – 32n
- 84n² – 32n > 0
- 4n(21n + 8) > 0
4n(21n + 8) < 0
4n(21n + 8) = 0
n₁ = 0
21n + 8 = 0
n₂ = - 8/21
+ - +
à
-8/21 0 x
- 1/5 ∈ [- 8/21; 0]
при значении параметра n = - 1/5 сумма квадратов корней
уравнения x² − 2nx + 22n² + 8n = 0 будет наибольшей
ответ: n = - 1/5
Объяснение: