Найди сумму всех натуральных чисел, не превосходящих 160, которые при делении на 20 дают остаток 1.
ответ:
1. искомое натуральное число имеет вид (запиши числа): ⋅k+
2. Сколько имеется таких натуральных чисел, которые не превосходят 160:
3. Запиши сумму заданных чисел: Sn=
y
=
6
x
−
x
2
Переставим
6
x
и
−
x
2
.
y
=
−
x
2
+
6
x
Определим свойства данной параболы.
Нажмите, чтобы увидеть больше шагов...
Направление: направлено вниз
Вершина:
(
3
,
9
)
Фокус:
(
3
,
35
4
)
.
Ось симметрии:
x
=
3
Направляющая:
y
=
37
4
Выберем несколько значений
x
и подставим их в уравнение, чтобы найти соответствующие значения
y
. Значения
x
должны выбираться близко к вершине.
Нажмите, чтобы увидеть больше шагов...
x
y
1
5
2
8
3
9
4
8
5
5
Построим график параболы, используя ее свойства и выбранные точки.
Направление: направлено вниз
Вершина:
(
3
,
9
)
Фокус:
(
3
,
35
4
)
.
Ось симметрии:
x
=
3
Направляющая:
y
=
37
4
x
y
1
5
2
8
3
9
4
8
5
5
Это выражение можно легко решить .Итак начнем:
Пока что без столбиков :
3.6:0,08+5,2*2,5
3,6:0,08 = 45 5,2*2,5=13
Теперь будем вместе их складывать :
45+13 =58
Столбиком :
36l0,08 ×5,2
32⊥45 2,5
__ ___
40 13
40
___
0 Сложение надеюсь ты сам его сделаешь столбиком.