к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
В решении.
Объяснение:
5.
а) при каких значениях х имеет смысл выражение √-3х?
Выражение имеет смысл, если подкоренное выражение больше либо равно нулю:
-3х >= 0
3x <= 0 знак неравенства меняется при умножении или делении на -1
x <= 0
Выражение имеет смысл при х <= 0;
б) Построить график у = √-3х.
Придать значения х меньше либо равно нулю и вычислить значения у, записать в таблицу:
х -9 -8 -7 -6 -5 -4 -3 -2 -1 0
у 5,2 4,9 4,6 4,2 3,9 3,5 3 2,5 1,7 0
По полученным значениям построить график.
в) Согласно графика, у=3 при х = -3;
согласно графика, у=4 при х = -5,4.
ответ: ниа.
объяснение:
к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
сos px = a; sin gx = b; tg kx = c; ctg tx = d.